N('pVO g 1€ | Leading Edge Genomic Services & Solutions @

ChIP-Seq Analysis Report
Demo Report

Overseas Department

Sep 21, 2016

Novogene Co,, Ltd en.novogene.com




N( <VO g 1€ | Leading Edge Genomic Services & Solutions @

Contents

L PIPCINEG ..ot e et e et e et e e e tr e e et e e e aeeeenbeeennree s 1
IE RESULLS .t et et sab e et e s eaeeas 2
1 Data quality CONtIOL.........coovviieiiiiiie et 2
1.1 FastQC of RaW _1€ads .....ccveeeiiiieeiiieeieeeieeeeeee e 2

1.2 Trimming of raw data ..........ccoccvviiiiiiieiiieeeeeee e 3

1.3 FastQC of Clean 1eads .........cccueeevuveeeiieeeieeeiieeciie e 4

P2\, -1 o) 0111 Y PSS 4
2.1 SUMMAry Of MAPPING.....cccvvireriieeriieerieeerteeesteeesreeeseeeeeeeeesseeesseeenes 4

22 MAPQ ..ottt ettt 5

2.3 Genome-wide distribution of the mapped reads...........cccccvvevevveennennns 6

2.4 Distribution of the reads mapped to the gene .........ccccceevvevvevcveennnnns 7

2.5 Sample correlation deteCtion............cevcveeeriieeriieeriee e 8

2.6 Visualization of pileup signal..........cccccveeriiieiiiiieiiieecieeeeeeee e, 9

3 Fragment S1Z€ PrediCtion........uieevieeeieeeeiieerieeesiieeeseieeeveeeteeeeaeeesneeesvee e 10
3.1 Summary of fragment SIZ€..........cccvveerieeerieeeiieeiee e 10

3.2 K distribution of fragment SiZe€ ...........ccceevvieeriieeriieeieeeee e 10

4 Strand €ross COTTEIAtION. .......eoiuiiiiiiriiiiieeie et 11
4.1 Summary of strand cross correlation ............cceccveeevveercieenciieenieeeee, 11

4.2 Plots of strand cross COrelation...........ccueeeeveeecieencieenieeeeeeeevee e 12

4.3 SCC distribution between experimental groups ..........ccceeeevveerveeenee. 13

S PEAK CalliNg ...cccuviieiieeiee ettt e e 13
5.1 Summary of peak calling ..........ccccvveriiieiiiieiiie e 14

5.2 Genome wide distribution of peaks ..........ccccevveeviieeiiieeiiieeieeeieee 14

5.3 Distribution of peak Width ..........ccccooviieiiiieiiieeecceeeee e, 15

5.4 Distribution of fold enrichment ............ccccoovviiiiriiieeniieeeeeeeeeeee 15

5.5 Distribution of @ Values.........ccceeeeiiiiiiieiiieecie e 16

5.6 Count of sUMMItS 1N PEAKS.......eevvviieriiieeiiieeciie et et 17

5.7 Summits diStrIDULION .......eeiuiiiiieiiereeeee e 17

6 MOt ANALYSIS....uviiiiiieiiie ettt et e 19
6.1 MOtif SEArChING ......eeieiiieiiiecieece e 19

6.2 MEME motif annotation ............ccceeeieeeriiieeniie e eriee e snee e 20

6.3 Dreme motif annotation ............cccveeeiieeeriiieeniieerieeerie e 21

7 Peak annotation ......ccc.eeiiieiiiiiiieie et 22
7.1 Peak-TSS diStance .......cccceeveieiieniieiieieeeee e 22

7.2 Distribution of peaks in functional region ...........cccceeevveevveerceeennnenn. 23

7.3 GO enrichment analysiS.........cccveriviieriiieerieeeiee e 23

7.4 GO enriChMEeNt . ...cc..eoiuiiiiiiieiiiee e 24

7.5 KEGG enrichment analysisS.........ccccuveruieenieeeniieeiee e eeeeevee e 25

7.6 Scatterplot of KEGG enrichment...........cccceeeviieeiiieniieecieecee e, 25

8 Differential analySis......c.cecvieeiiiiiiiieiiiccee e 26

8.1 Summary of differential peaks..........ccceevuiieriiieiiiieiieeeeeee e, 27



N('pVO g 1€ | Leading Edge Genomic Services & Solutions @

8.2 Enrichment level analysis among different samples............ccccccuu.... 28

8.3 Reads density distribution among comparable groups for the
ANNOLALEA PEAKS ...ccuvveeeiiieeiie e e 28
8.4 Enrichment level of different experimental peak analysis................. 29

8.5 Reads density distribution among different experimental groups for

the annotated PeakS .......c.eeevviieiiiieiiecee e 30
8.6 GO enrichment analysis of differential peak related genes ............... 31

8.7 KEGG enrichment analysis of differential peak related genes.......... 31

IIT REEIENCES ...t 32

TV CONEACT US ettt e e e e e e e e e e et e e e e e e e e e e e e eeeeeereennaaaaeas 34



N‘QVO g 1€ | Leading Edge Genomic Services & Solutions @

I Pipeline

Chromatin Immunoprecipitation Sequencing (ChIP-seq) is a method which
combines Chromatin Immunoprecipitation (ChIP) and the next generation sequencing
(NGS) technology. This method can identify genome regions that interact with
transcription factors and chromatin-associated proteins in the whole genome region
efficiently. By mapping the sequencing results onto the genome accurately,
researchers can obtain genome wide information about the DNA region interacting
with histone and transcription factor.
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I1 Results

1 Data quality control

1.1 FastQC of Raw_reads

As the high-throughput sequencing technology getting mature, we can obtain a
mass amount of data easily. The key is how to extract the information that we need
from the data. The first step is to check the raw data quality before doing follow-up
data analysis. The popular tool for the quality control is software FastQC. Summary
of the raw data quality control is in the following:
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Figure 1-1 raw reads of FastQC

Top-left: horizontal axis represents position in read (bp), vertical axis represents quality scores.
Different colors represent different quality range;

Top-middle: horizontal axis represents position in read (bp), vertical axis represents base percentage;
Top-right: the distribution of read length;

Bottom-left:GC distribution over all sequences. Red line is the actual GC content distribution, blue line
is the theoretical distribution;

Bottom-middle: N-ratio across all bases;

Bottom-right: x-axis is the sequence duplication level. y-axis is the percent of reads.



N('pVO g 1€ | Leading Edge Genomic Services & Solutions @

1.2 Trimming of raw data

For the raw data which pass the quality control, primer mismatch may result in
nucleotidic composition bias at first several positions of the reads, which could lead to
wrong bases insertion during sequencing. Because of the small fragment size of
ChIP-Seq, there are often some adapter-appended reads. Trimming off the adapter
sequences and low-quality bases is necessary. To make sure the quality of data
analysis, raw data need to be filtered to get clean data, and all the follow-up analysis
are based on these clean data. The procedure for data trimming is in the following:

(1)Discard the reads with low quality (proportion of low quality bases larger than 50%)
(2) Discard the reads with N ratio (unsure base) larger than 15%;

(3) Discard the reads with adaptor at the 5’-end;

(4) Discard the reads without adaptor and inserted fragment at the 3’-end;

(5) Trim the adapter sequence at the 3’-end,

(6) Discard the reads whose length are less than 18nt after trimming.

Table 1-1 Summary of raw data quality control

Sample Raw_reads Low_quality Degeneratives Empty Too_short Trimmed Untrimmed Clean_reads Clean_rate

samplel 38002460 33356 0 16883 21015 7302322 30628884 37931206 99.81%
sample2 38482511 46282 0 25031 27503 7906848 30476847 38383695 99.74%
Input 37962236 38771 0 26707 21640 7669072 30206046 37875118 99.77%

While trimming, the bases that match the adapter or with quality value less than 20 at the 3’-end are
removed, and only the reads whose length is longer than 18nt after trimming are kept.

Raw_reads: reads from the base-calling. Click on the number to check the result of FastQC;
Low_quality: reads with mean quality lower than 20 before trimming;

Degeneratives: reads with at least 15% N before trimming;

Empty: reads with all bases from adapter (s);

Too_short: reads shorter than 18nt that are discarded after trimming;

Trimmed: reads with at least 18nt that are kept after trimming;

Untrimmed: reads that are kept untrimmed;

Clean_reads: kept reads after trimming, including both trimmed and untrimmed. Click on the number
to check the result of FastQC;

Clean_rate: the ratio of Clean_reads to Raw_reads.
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1.3 FastQC of Clean_reads

Quality control of the clean reads after trimming is in the following:
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Figure 1-2 FastQC of clean reads

Top-left: horizontal axis represents position in read (bp), vertical axis represents quality scores,
different colors represent different quality range.

Top-middle: horizontal axis represents position in read (bp), vertical axis represents base percentage.
Top-right: the distribution of read length.

Bottom-left: mean GC content (%). Red line is the actual GC content distribution, blue line is the
theoretical distribution.

Bottom-middle: N-ratio across all bases.

Bottom-right: x-axis is the sequence duplication level. y-axis is the percent of the deduplicated reads.

2 Mapping

2.1 Summary of mapping

The common tools for mapping are Bowtie, BWA, MAQ, TOPhat, etc. We choose
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proper softwares and parameters according to different genome characters to do the
genome mapping analysis for the filtered reads. Considering the small fragment size
of ChIP-Seq, and the percentage of the unique sequence in the total sequence is the
most important information, thus, we can map the reads to the reference genome using
BWA much more accurately (Li, H. and R. Durbin, 2009). The summary of mapping
is in the following table:

Table 2-1 Summary of mapping

Sample Reads  Clean_reads Mapped Unique_mapped Dup_Unique_mapped
samplel pair 37931206 37023425 (97.61%) 35542632 (96.00%) 564664 (1.59%)
samplel readl 37931206 37930884 (100.00%) 36075911 (95.11%) 571713 (1.58%)
samplel read2 37931206 37028439 (99.99%) 36040268 (95.02%) 571591 (1.59%)
sample2 pair 38383695 37421719 (97.49%) 35819760 (95.72%) 441994 (1.23%)
sample2 readl 38383695 38382655 (100.00%) 36352170 (94.71%) 447414 (1.23%)
sample2 read2 38383695 38379010 (99.99%) 36312106 (94.61%) 447380 (1.23%)
Input pair 37875118 36203819 (95.59%) 34588047 (95.54%) 286908 (0.83%)
Input readl 37875118 37874747 (100.00%) 35825022 (94.59%) 207565 (0.83%)
Input read2 37875118 37871974 (99.99%) 35780416 (94.48%) 207553 (0.83%)

Unique _mapped: reads with MAPQ (Li and Ruan et al., 2008) no lower than 13; can be interpreted as

the chance of non-accurate mapping (same score for the random mapping) is 0.05.

Duplicates: the reads mapped to the exact same position of the genome;

Mapped is relatively to Clean reads;

Unique mapped is relatively to Mapped;

Dup Unique mapped is relatively to Unique _mapped; For human and point-source factors, the

recommended Unique mapped region should be at least 10M, and the repetition rate should be less
than 20% (Landt, S. G. and G. K. Marinov, et al, 2012).

2.2 MAPQ

The most important thing during Chip-Seq analysis is the percentage of the unique
sequence in the total sequence number. Duplicates were labeled using SAMBLAST
(Faust and Hall, 2014) and mapping quality value was calculated (MAPQ). Proper
quality value was chosen as the only threshold for mapping. Here we choose 13 as the
threshold, which means that the mapping chance of the accordingly non-unique region
is only 0.05. Only keep one reads for the duplicates in the followed peak calling.
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Figure 2-1 Distribution of MAPQ

Horizontal axis is MAPQ, vertical axis is the reads count.
2.3 Genome-wide distribution of the mapped reads

Summary of the density of total mapped reads in different chromosomes (plus and
minus) is shown in the followed figure. With 5k slide window size, calculate the
medium of the number of reads mapped to each base within window, and convert it to
log2. The longer the whole chromosome is, the more reads are mapped (Marquez et al.
2012). From the correlation of the number of the mapped reads and the length of the
chromosome in the figure, we can see the correlation of the total number of the reads
and the length of the chromosome much easier.
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Figure 2-2 Genomewide distribution of the mapped reads

Horizontal axis represents the postition of the chromosome, vertical axis represents
the number of the reads mapped to 1000nt window size. Here is the unique mapping
and deduplication results.

2.4 Distribution of the reads mapped to the gene

Since the binding sites of transcription factor and histone protein are important for
gene regulation, thus, analysis of relative mapping position distribution can help us
predict the protein function. Divide each gene and its 2kb upstream and 2kb
downstream into 100 equal parts. Calculate mapped reads in each part, and the
percentage ratio of the reads in each part to total reads as reads density.
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Fig2-3 Distribution of the reads mapped to gene

Horizontal axis: relative position of the gene.

vertical axis: reads density.

2.5 Sample correlation detection

Biological replicate is necessary for every experiment, same for high-throughput
technology (Hansen et al.). Biological replicate mainly has two applications: One is to
prove that the biological experiment can be replicated and there is no large variance.
The other one is to make sure that following differential gene analysis can get reliable
results. The correlation among samples is an important index to see whether the
experiment design is reliable and whether the sampling is right. The correlation
coefficient is much closer to 1, the similarity of the expression pattern among samples
1s much higher.
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Figure 2-4 Pearson test among samples
Heat-map of sample correlation test, correlation coefficient among samples
(Pearson correlation coefficient). The darkness of the color represents how large is the
correlation coefficient.

2.6 Visualization of pileup signal

We provide the visualization results of genome wide reads mapping in bam format.
IGV (Integrative Genomics Viewer) browser is recommended to view the bam file.
IGV browser has the following characters: (1) can reveal single or multiple mapping
positions in the genome in different scales, including the distribution of the reads in
different chromosomes, and the distribution of annotated exons, introns, splicing
junctions and inter-gene region; (2) can reveal reads abundance in different region
under different scales which reflect the expression level; (3) can reveal the annotation
information of the gene and alternative splicing isoforms; (4) can reveal other
annotation information; (5) can download annotation information from remote and
local server. Please check the IGV manual for detail instruction (IGVQuickStart.pdf).
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Figure 2-5 Visualization of pileup signal by IGV (demo)

3 Fragment size prediction

3.1 Summary of fragment size

For a specific binding site, there is a significant reads enrichment in the binding site.
For single-end sequencing, we use MACS2 software to predict the frag sizes of IP
experiment. MACS?2 scan the whole genome using certain window size and calculate
the enrichment level of the reads in each window. Then extract (eg.1000) proper
windows as the samples to build the enrichment model to predict the length of
frag sizes. For double-end sequencing, we use RSeQC software to predict the
frag_sizes for the mapping results. Use the predicted frag_sizes for later peak calling.

Table 3-1 summary of frag_size

Sample frag_sizes_length infor
K_input 200 default parameter
K_K9_IP 200 default parameter
Na_input 200 default parameter
Na_K9_IP 200 default parameter

Sample: sample name
frag sizes length: frag sizes length

infor: default parameter

3.2 K distribution of fragment size

Length distribution using kernel density method is in the following:
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Figure 3-1 frag_size distribution
Single end:

left: horizontal axis is the distance to the center of peak model. vertical axis is the percentage of the
reads chosen for modeling.

Red color represents plus strand, blue color represents minus strand.

Right: horizontal axis is the distance to the middle of the peak model. vertical axis is the correlation
between plus strand and minus strand. The distance from the red dash line to the middle is the predicted
frag_sizes.

Double end:

horizontal axis is the length of the predicted length of frag_sizes, vertical axis is the value of kernel

density.

4 Strand cross correlation

4.1 Summary of strand cross correlation

As we know that the measured reads will be approximately distributed to plus and
minus tags in average. In this way, by calculating the correlation of plus and minus
strand (SCC), we can test the best distance between two strands. By testing the SCC
of IP and input data, we can not only obtain the correlation coefficient between plus
and minus strand, but can also test the effect of IP experiment.

11
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Table4-1 Summary of strand cross correlation

Predicted_fra i CC_read_len CC_fragment

Sample Median_read_length CC_min NSC RSC Description
gment_length gth _length
The immunoprecipitation
samplel 125 250 0.4282 0.4357 0.4568 1.0668  3.7965
seems to be successful.
~ The immunoprecipitation
sample2 125 240 0.4312 0.4465 0.4671 1.0831 23444
seems to be successful.
_ . The immunoprecipitation
Input 125 240 0.4259 0.4380 0.4541 1.0661  2.3268
seems to be successful.

Sample: sample name

Median_read length: mean value of reads length

Predicted fragment length: predicted length of fragment sizes
CC_min: the lowest SCC

CC read_length: the SCC of the longest reads

CC _fragment_lengt: fragment sizes relative SCC

NSC: normalized strand coefficient, no less than 1.05

RSC: relative strand correlation, no less than 0.8

4.2 Plots of strand cross correlation

SCC curve for all the samples reveal the enrichment from different IP or different

experiments.
Normalized Strand Cross Correlation Curve
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Figure4-1 Plots of strand cross correlation

Different color represents different samples.

12
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4.3 SCC distribution between experimental groups

The SCC curve of successful IP in the same experimental group (including IP and
Input) in the frag size has a peak. The ratio of the CC (Cross Correlation) value of
this peak to the lowest CC value of the whole SCC curve (NSC) should be no less
than 1.05. Besides, there is another peak (shadow peak) in the reads. RSC value
(should be no less than 0.8) need consider the ratio of two differences, the difference
between the CC value in the frag size and the lowest CC value, and the difference
between CC value in the shadow peak and the lowest CC value.
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Figure4-2 SCC curve

Horizontal axis is the lag between plus and minus tags during Pearson Correlation Coefficient

calculation. Vertical axis is the Pearson Correlation Coefficient.

5 Peak Calling

The annotation of transcription factor binding sites, histone binding sites is the
important information for understanding the regulation mechanism and function.
Recent developed next generation sequencing technology sequence DNA after
Chromatin Immunoprecipitation directly. By mapping to the reference sequence can
obtain the information of protein-DNA binding sites directly. By making use of
MACS2 software (Yong Zhang,Tao Liu et al., 2008) (threshold q value=0.05) to finish
the peak calling, we can calculate the number of peaks, the peak width and its
distribution, and find the peak related genes. The results are in the following:
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5.1 Summary of peak calling

Table5-1 Summary of peak calling

Experiment [P Input/Mock Fragment length Count of peak FRiP Count of summits
samplel samplel Input 265(predicted) 17520 5.01% 25120
sample2 sample2 Input 269(predicted) 16909 5.08% 23731

Experiment: experimental group name(one ChIP Experiment includes an IP and a control, eg. Input or
Mock or no control);

IP:experiment name after chip handling.

Input/Mock: control group

Frag_length: predicted value of frag_sizes length;

Count_of peak: the number of peak (narrow). If would like to test broad peak, need annotate in the
information collection form.

FRiP: the ratio of the numer of the reads in the peak to the total reads, which can test the effect of IP
experiment.

Count_of summits: number of summits. Some peaks can have multiple summits due to close position.

5.2 Genome wide distribution of peaks

Summary of genome wide distribution of peaks is shown in the following figure.
From the number of the peak mapping to the chromosome and its distribution can
reflect the distribution of the protein binding sites. When the number of the
chromosomes including the peak is larger than 30, only show the peak distribution in
15 chromosomes.
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Figure 5-1 Genome wide distribution of peaks

Horizontal axis is the coordinate of the peak in the chromosome. Vertical is the
chromosome. Every blue line represents a peak. When the number of the
chromosomes including the peak is larger than 30, only show the peak distribution in
15 chromosomes.

5.3 Distribution of peak width

The peak width represents the length of the DNA that is bound by protein.
Calculate the number of peaks using peak width as the measurement. The distribution
of peak width is in the following:
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Figure 5-2 Distribution of peak width

Horizontal axis is the width of the peak (nt), vertical axis is the number of the corresponding peaks.

5.4 Distribution of fold enrichment

The fold enrichment value here can be also called as signal value, which is the
digital display of the peak signal during peak calling. The larger the value, the more
reads are enriched to this peak. Calculate the number of the peaks using fold change.
The distribution of fold enrichment is in the following:

15
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Figure 5-3 Distribution of fold enrichment

of the peaks.
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Figure 5-4 Distribution of q values

represents the number of the peaks.

16

Horizontal axis represents the enrichment fold change of the peak. Vertical axis represents the number

The significance of the peak is the measurement of the confidence level. Calculate
the q value for eah peak. Calculate the number of peaks using the significance of peak
as the measurement. The significance distribution is in the following:

20 Inf

Calculate the q value in each peak; Horizontal axis represents -log10 q value of the peak; Vertical axis
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5.6 Count of summits in peaks

Calculate the number of summits in each peak, and infer the type of peak in IP

experiment.

sample1

Count of peaks

04 . . . :
0 5 10 15 20 Inf
Summits per peak

Figure 5-5 Count of summits in peaks

Horizontal axis represents the number of summit in each peak. Vertical axis is the corresponding

number of the peak.

5.7 Summits distribution

Each peak was divided to 100bp windows and the summits in each window of all
the peaks were counted in the following:

17
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Figure 5-6 Percentile position of summits in peaks

Horizontal axis is the position of sumits, vertical axis is the count of the summits.

18
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6 Motif analysis

The binding of protein such as transcription factor, histone etc. and DANN is not
random, instead, has sequence preference. Motif analysis can not only detect protein
specific binding sites but can also obtain the annotated motif and it’s binding site,
motif sequence information etc. By using MEME(Timothy L. Bailey and Charles
Elkan,1994)and Dreme (Timothy L. Bailey,2011) softwares to detect significant motif
sequence in the peak. By wusing Tomtom (Shobhit Gupta, JA
Stamatoyannopolous,2007) software can annotate the motif by mapping it to the
annotated Motif database.

Use sequence logo to show the base bias in different position in the binding sites in
long Motif (8~30) (Fig. 6-1) and short Motif (~8) (Fig. 6-2). The results are in the
following:

(Note: because of binding site specification, motif sequence can only show in one
region (<=8 or >=9), so that part of the figure in the following has empty result).

6.1 Motif searching
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Figure 6-1 long conservative sequence

Logo is listed in order. The figure in the right is the reverse complement sequence.

19
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Fig. 6-2 short conservative sequence

Logo is listed in order. The figure in the right is the reverse complement sequence.

6.2 MEME motif annotation

Map the deteced motif sequence from MEME to the annotated motif using Tomtom.
The result is in the following:

(Note: since the conservative sequence in the binding site is short, motif can be
only in one region (<=8), resulting in no result for meme test).

Table 6-1 MEME detection Motif calculation

#Query_ID Target_ID Optimal_offsetFragment_length  p-value E-value q-value Overlap Query_consensus Target_
2 MA0528.1 6 8.65212e-07 0.000936159 0.00187232 15  GCAGAGGGAGGAGGA GGAGGAGGAGGGGGAGGAGGA
2 MA0543.1 0 0.000129958 0.140615 0.0951017 15 GCAGAGGGAGGAGGA AGAGAGACGCAGAGA
2 MA0162.2 0 0.000131842 0.142653 0.0951017 14 GCAGAGGGAGGAGGA GGCGGGGGCGGGGG
2 MA0516.1 1 0.000751672 0.81331 0.406655 14 GCAGAGGGAGGAGGA GGGAGGGGGCGGGGC
3 MA0481.1 0 8.90835e-06 0.00963883  0.017767 15 TITTGTTTTGTTTTT CTTTGTTTACTTTTG
3 MA0554.1 4 1.64372e-05 0.017785 0.017767 15 TITTGTTTTGTTTTT TTTTTTTTTTTTITTTITITTT

#Query ID: detected motif;

Target ID: known motif ID in the database;

Optimal offset: the number of lag bases;
p-value:probability of MCMC;

E-value:false positive probability;

g-value: FDR value;

Overlap: overlapping base pair between two sequences;
Query consensus: detected motif sequence;

Target consensus: motif sequence in the target database;

Orientation: plus or minus strand for the target sequence;

Using sequence logo to show the comparison results between MEME detected
motif and known motif. The result is in the following:
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Figure 6-3 MEME motif annotation

6.3 Dreme motif annotation

The comparison between the motif detected by Dreme use Tomtom and known

motif:

(Note: Since the conservative sequence in the binding sites is long, the motif could
only show up in one region (>=8), which could show empty result with Dreme

detection)
Table 6-2 Summary of motif detected by Dreme

#Query_ID Target_ID Optimal_offsetFr _length p-val E-val g-val Overlap Query_consensus
RKAAA MA0277.1 4 0.00077907 0.842954 1 5 AGAAA AAAAAGAAA
RKAAA MA0137.3 6 0.00176856 0.917881 0.909259 5 AGAAA TTTCCTGGAAA
RKAAA M6492_1.02 7 0.000803336 0.580008 0.79935 5 AGAAA AATTCCCAGAAAA

CACAGWGR  MA0543.1 7 0.00213247 0.767688 1 8 CACAGTGA AGAGAGACGCAGAGA
RKAAA MAO0558.1 13 0.00150225 0.54081 0.808255 5 AGAAA AATTTCCAAAAATAGAAAGAA
ATWTTM MA0606.1 0 0.00153338 0.795825 1 6 ATTTTC ATTTTCCATT

#Query ID: detected motif ID;

Target ID: known motif ID in the database;

Optimal offset: lag base number;

p-value: probability of MCMC;

E-value: false positive probability;

g-value: FDR value;

Overlap: overlapping base between two sequences;

Query consensus: detected motif base sequence;

Target consensus: motif base sequence in the target database;

Orientation: plus or minus tag for the targeted sequence;

Target_consensus Ori
+

+

Sequence logo showing the comparison result between detected motif with Dreme

and known motif'is in the following:
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Figure 6-4 Dreme motif annotation

7 Peak annotation

7.1 Peak-TSS distance

Peak-TSS distance distribution can predict protein binding sites. One can estimate
IP effect according to protein binding sites. One can predict protein regulatory
mechanism or function according to the protein binding character. TSS (transcription
start site) of every peak related gene TSS are detected using PeakAnnotator
(Salmon-Divon and Dvinge et al., 2010). Calculate peak numbers according to
peak-TSS distance, and analyze peak-TSS distance distribution.

sample2

Count of peaks
40 60 80 100 120 140
f

20
N

o4 mriEEE i I
-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0
Distance to TSS / bp

Figure 7-1 Distribution of Peak-TSS Distance

Horizontal axis represents the distance from peak to TSS. Vertical axis represents the number of the
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7.2 Distribution of peaks in functional region
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Figure 7-2 peak distribution in functional gene region

Distribution of peak in different functional area. Horizontal axis represents different functional area,
vertical axis represents the ratio of the peak in the functional region to the total peaks. The number on
the top of the functional region represents peak number.

U2000 means 2000bp in the upstream region, D2000 means 2000bp in the downstream region;
CDSu2K and CDSd2K means upstream and downstream 2kb of CDS;

TSS100, Stop100, start100 means 100bp centered with TSS,TTS, Start-codon and stop-codon.

7.3 GO enrichment analysis

Gene Ontology (GO, http://www.geneontology.org/) is international standard
classification system for gene function attributes. As the database built by Gene
Ontology Consortium, it aims to build up an updating language vocabulary standard
to describe gene and protein function for all species. GO covers three domains:
Molecular Function, Biological Process and Cellular Component.

Gene or protein can find the corresponding GO accession number by ID access or
sequence annotation. And every GO number can find its corresponding Term, which is
the function classification or cellular localization.

Any gene whose position is overlapped with peak is peak related gene. Results of
GO enrichment is in the following:

Table 7-1 peak related gene GO enrichment
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Description Term_type  Overrepresented_pValue Corrected_pValue Gene_item Gene_list Bg_item Bg_listgenes

substrate-specific channel activity ~molecular_function 1.4325e-12 1.449¢e-08 56 1008 404 20790 ...
channel activity molecular_function 1.4918e-11 7.5454e-08 56 1008 428 20790 ...
passive transmembrane molecular_function 1.4918e-11 7.54546-08 56 1008 428 20790 .

transporter activity

metal ion transmembrane

transporter activity molecular_function 1.6096e-10 5.6396e-07 52 1008 405 20790 ...
intrinsic component of membrane  cellular_component 1.5744e-12 2.5174e-08 1084 2813 6754 20790 ...
nervous system development biological_process 3.1566e-12 2.5174e-08 378 2813 2006 20790 ...

GO _accession: the unique GO ID;

Description: Function description;

Term_type: Including cellular_component, biological process and molecular function;
Over_represented pValue: significance of enrichment analysis;

Corrected pValue: P-Value after correction, normally, with padj< 0.05 are enriched;
Gene_with_peak item: the number of peak related genes with this GO term;
Gene_with_peak list: the number of peak related gene;

Bg_item: the number of background gene with this GO term;

Bg list: the number of background genes;

Genes: Annotated peak related gene ID (not show in this table);

Choose the first five results for each experiment.

7.4 GO enrichment

Peak overlapping gene GO enrichment bar, which directly reflect the distribution of
the number of the peak overlapping genes enrichment on the biological process,
cellular component and molecular function.

Fig 7-3 GO enrichment

Bar: horizontal axis is the number of the peak overlapping gene. Different color is used to differentiate

biological process, cellular component and molecular function.
DAG figure: every note represents a GO project. Rectangular represents top 10 enrichment GO.

Darkness represents the enrichment level. The darker of the color, the higher of the enrichment.
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The name of the project and the significance (padj) are shown in every note.

7.5 KEGG enrichment analysis

Different genes coordinate to each other to realize the function in organism.
Pathway enrichment can help identify the main biochemical metabolic pathway and
signaling pathway of differential expressed genes. KEGG (Kyoto Encyclopedia of
Genes and Genomes) is a database which can analyze gene function and genome
information. It helps researchers study the genes and their expression as a whole
network. As the main public database related to pathway (Kanehisa,2008), KEGG
provides an excellent pathway search, including metabolism of carbohydrates,
nucleotide, amino acids, etc. and organism biodegration. This not only provide the
possible metabolism pathway, but also give a comprehensive annotation of the
enzyme in each catalytic reaction, including amino acid sequence, PDB link etc. It is a
powerful tool to study organism metabolism and do network analysis. Pathway
enrichment makes use of pathway in the KEGG database as the unit, with super
geometric test to find the significant enriched pathway in the differential expressed
genes with the whole genome as the background.

Table 7-2 KEGG enrichment list

Term Database ID Input number Background number P-Value Corrected P-Value Input Hyperlink
Glycolysis / Gluconeogenesis KEGG PATHWAY ~ mmu00010 51 65 5.26123929581e-26  6.60285531624e-24 ... ...
HIF-1 signaling pathway KEGG PATHWAY  mmu04066 59 1M 1.96826350039%-23  1.26646380843e-21 ... ...
Biosynthesis of amino acids ~ KEGG PATHWAY mmu01230 51 78 2.01826901742e-23  1.26646380843e-21 ... ...
Carbon metabolism KEGG PATHWAY  mmu01200 55 1M1 7.56051316754e-21  3.79537761011e-19 ... ...
Metabolic pathways KEGG PATHWAY  mmu01100 446 1256 2.70331293685e-05  0.00721784554139 ... ...
Legionellosis KEGG PATHWAY  mmu05134 30 58 0.00679525773783 0.543928912524 ... ...

(1) Term: Description information of KEGG pathway.

(2) Database: KEGG PATHWAY.

(3) ID: The only pathway identifier in the KEGG database.

(4) Input number: the number of peak overlapping gene in the corresponding pathway.

(5) Background number: The number of the genes in the corresponding pathway.

(6) P-value: statistical significant level of enrichment analysis.

(7) Corrected p-value: statistical significant level after correction. Normally, if the corrected P-value <
0.05 this pathway is enriched.

(8) Input: The peak overlapping genes in the corresponding pathway. Because of too much genes, here
we ignore it.

(9) Hyperlink: see result file.

7.6 Scatterplot of KEGG enrichment

Peak overlapping gene KEGG enrichment scatter (Fig7-4) is the visualization of
KEGG enrichment analysis. In this figure, the extent of KEGG enrichment is
measured by Rich factor, qvalue and the number of the genes that are enriched in this
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pathway. Rich factor is the ratio of the number of the genes in the corresponding
pathway of the peak overlapping gene to the total number of all annotated genes in
this pathway. qvalue is the pvalue after multiple hypothesis testing correction. The
range of qvalue is from 0 to 1, with more close to 0, representing more significant for
the enrichment. Here only shows the top 20 significant enriched pathways. If the
enriched pathways are less than 20, then all of them are shown.

Statistics of Pathway Enrichment

Type |l diabetes mellitus 4
Transcriptional misregulation in cancer4
Sulfur metabolism
RNA transport- e
RNA degradation

Ribosome [ qvalue
1.00

Riboflavin metabolism - -

0.75
Pyruvate metabolism
0.50

Neuroactive ligand-receptor interaction
0.25

Metabolic pathways -
pathways 1@ N
HIF-1 signaling pathway - [ ]
Gene_number
Glycosaminoglycan biosynthesis - heparan sulfate / heparin - . 25
Glycolysis / Gluconeogenesis - ° ® 50
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Figure 7-4 KEGG enrichment scatter

Vertical axis represents pathway name, horizontal axis represents Rich factor, the size of the dot
represents the numbers of the overlapping peak genes in the pathway, and the color of the dots
corresponds to different qvalue range. The size of the dots represents the number of the genes whose

peaks are overlapping in this pathway.

8 Differential analysis

Only do differential analysis between groups when the number of groups is no less
than two.

Calculate differential analysis using FoldEnrich of peak in different experimental
groups (the ratio of RPM value in group A to group B). Finding differerntial binding
sites in different groups by finding differential peak when the ratio of FoldEnrich is
larger than 2. From which, we can find the differential binding sites related gene to do
the follow-up annotation and enrichment.
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8.1 Summary of differential peaks

NaCl_1:1

Figure 8-1-1 Venn diagram of differential peak in comparable groups
Here shows the peak number within comparable group (eg. A and B). Different colors represent
different comparable groups (A or B). The sum of the number in the pie is the peak number of this
comparable group. Single color is group specific peak number. Overlapping part is the common peak

number between two comparable groups. Colon represents the number of appearance within the group.

KCL1 NaCl_1

Figure 8-1-2 Venn diagram of differential peak in comparable gruops

Since some comparable groups (eg. A or B) include multiple experimental groups (eg. Al, A2, A3),
here only show the number of peak among experimental groups within one comparable group (eg.
Al&A2, A1&A3). Different colors represent different experimental groups (Al or A2). The sum of the
number in the pie is the peak number of this experimental group. Single color is group specific peak

number. Overlapping part is the common peak number between two experimental groups.
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8.2 Enrichment level analysis among different samples

Use RPM value of the peak in different samples (the ratio of 1M reads that enriched
to the peak in a single sample) to do clustering analysis to determine the enrichment
pattern of same peak in different samples or the enrichment difference of different
peak in the same sample. At the same time, Enrichment comparison between IP and
Input in the group can show the peak enrichment in [P experiment. To do hierarchical
clustering based on RPM value in different samples. Different colors represent
different clustering information. The more close between the IP sample enrichment,
the more similar function or biological process they have.

Heatmap_of_RPM_in_peak
KCI_1_vs_NacCl_1

M

died o

ndu™y
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Figure 8-2 Enrichment analysis among samples
Top is the clustering among different samples in comparable groups.

Bottom is the correlation among different samples in comparable groups.

8.3 Reads density distribution among comparable groups for the

annotated peaks

Calculate RPM value of each sample within peak annotated area (the ratio of 1M
reads enriched to the peak in one sample). Using boxplot to show reads enrichment in
the annotated peak area in different samples.
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Figure 8-3 Boxplot of RPM value among samples in different groups
8.4 Enrichment level of different experimental peak analysis

Enrichment for the peaks by using the FoldEnrich value (the ratio of RPM from IP
and Input) of the peaks from different experimental group. This is used to determine
the enrichment pattern of the same peak in different experimental groups, or different
peaks in the same experimental group. At the same time, by comparing the fold
change of peak enrichment between different experimental groups, reveal the
condition of peak enrichment among experimental groups to find differential enriched
peak, which is the differential protein binding sites. Based on the FoldEnrich value
from different experimental groups to do hierarchical clustering analysis. Different
colors represent different clustering information.
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Figure 8-4 Peak enrichment analysis among different experimental groups
Top is the clustering analysis of peaks from different experimental groups.

Bottom is the correlation among different experimental groups.

8.5 Reads density distribution among different experimental groups

for the annotated peaks

Calculate the FoldEnrich (the ratio of RPM from IP and Input) value in every
comparable group in the peak annotation region. Enrichment level from different IP
was shown by boxplot.
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Figure 8-5 Reads density distribution in peak annotation region from different experiment
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8.6 GO enrichment analysis of differential peak related genes

GO enrichment analysis for the differential peak related genes. Result is in the

following:
The Most Enriched GO Terms (Diff_peak_KCI_1_vs_NaCl_1)
nervous system development _ *
central nervous system develop... 7 _ * Type
generation of neurons _ * . biological_process
neurogenesis _ * . cellular_component
neuron iferentation | [ * Il molecular_function
central nervous system neuron ... 7] | B
cell-cell adhesion via plasma-... - *
homophilic cell adhesion via p... 7 - *
axon guidance | [l *
neuron projection guidance - - *
sensory organ development _ *
cell-cell adhesion | [ +
multicellular organismal devel... 7 _ *
E single organism signaling | _ *
o head development | [ *
o celladhesion 1| [ +
15} signaiing | I —-
chemotaxis | [ *
taxis | [
locomotion - I
plasma membrane [
cellperiphery [
intrinsic component of membran... 7| [
integral component of membrane —*
membrane part 1| [+
signal transducer activity _ *
molecular transducer activity _ *
signaling receptor activity | _ *
receptor activity | [ +
transmembrane signaling recept... 7 _ *
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Number of genes

Figure 8-6 GO enrichment analysis for the differential peak genes

8.7 KEGG enrichment analysis of differential peak related genes

KEGG enrichment analysis for the differential peak genes. Result is in the

following:

Statistics of Pathway Enrichment
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Figure 8-7 KEGG enrichment analysis for differential peak genes
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IV Contact us

The pipeline and the ways to present the results are under sustaining updating. If
you have any suggestions or questions about this report, contact us.

Tel: 0086-10-82837801 ext 849

Email: oversea_ support@novogene.com
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