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1 Library Preparation and Sequencing 

From the RNA sample to the final data, each steps, including sample test, library 

preparation, and sequencing, influences the quality of the data, and data quality 

directly impacts the analysis results. To guarantee the reliability of the data, quality 

control (QC) is performed at each step of the procedure. The workflow is as follows: 

 

1.1 Total RNA Sample QC 

All samples need to pass through the following three steps before library construction: 

(1) Nanodrop: preliminary quantitation 

(2) Agarose Gel Electrophoresis: tests RNA degradation and potential contamination 

(3) Agilent 2100: checks RNA integrity and quantitation 

1.2 Library Construction and Quality Assessement 

After the QC procedures, mRNA from eukaryotic organisms is enriched from total 
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RNA using oligo(dT) beads. For prokaryotic samples, rRNA is removed using a 

specialized kit that leaves the mRNA. The mRNA from either eukaryotic or 

prokaryotic sources then fragmented randomly in fragmentation buffer, followed by 

cDNA synthesis using random hexamers and reverse transcriptase. After first-strand 

synthesis, a custom second-strand synthesis buffer (Illumina) is added, with dNTPs, 

RNase H and Escherichia coli polymerase I to generate the second strand by 

nick-translation and AMPure XP beads is used to purify the cDNA. The final cDNA 

library is ready after a round of purification, terminal repair, Atailing, ligation of 

sequencing adapters, size selection and PCR enrichment. Library concentration was 

first quantified using a Qubit 2.0 fluorometer (Life Technologies), and then diluted to 

1 ng/μl before checking insert size on an Agilent 2100 and quantifying to greater 

accuracy by quantitative PCR (Q-PCR) (library activity >2 nM). The workflow chart 

is as follows: 

 

1.3 Sequencing 

Libraries are fed into HiSeq machines according to activity and expected data volume. 
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2. Analysis Workflow 

The analysis workflow for data without a reference genome is as follows: 
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3. Project Results 

1 Raw Data 

The original raw data from Illumina HiSeqTM are transformed to Sequenced Reads by 

base calling. Raw data are recorded in a FASTQ file, which contains sequence 

information (reads) and corresponding sequencing quality information. 

@HWI-ST1276:71:C1162ACXX:1:1101:1208:2458 1:N:0:CGATGT 

NAAGAACACGTTCGGTCACCTCAGCACACTTGTGAATGTCATGGGATCC

AT 

+ 

#55???BBBBB?BA@DEEFFCFFHHFFCFFHHHHHHHFAE0ECFFD/AEHH 

Line 1 begins with a '@' character and is followed by the Illumina Sequence 

Identifiers and an optional description. 

Line 2 is the raw sequence read. 

Line 3 begins with a '+' character and is optionally followed by the same sequence 

identifier and description. 

Line 4 encodes the quality values for the sequence in Line 2, and must contain the 

same number of characters as there are bases in the sequence (Cock et al.). 

Illumina Sequence Identifier details: 
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2 Data Quality Control 

2.1 Error Rate 

The error rate for each base can be transformed by the Phred score as in equation 1 

(equation 1: Qphred = -10log10(e)). Base Quality and Phred score relationship with 

the Illumina CASAVA v1.8 software: 

 
Sequencing error rate and base quality depend on the sequencing machine, reagent 

availability, and the samples. Error rate increases as the sequencing reads are 

extended and sequencing reagents become more and more scarce. Additionally, the 

first six bases have a relatively high error rate due to the random hexamers used in 

priming cDNA synthesis (Jiang et al.). 

 

 
Figure 1 Error Rate Distribution 

The x-axis shows the base position along each sequencing read and the y-axis shows the base error rate. 

2.2 GC Content Distribution 

GC content distribution is evaluated to detect potential AT/GC separation, which 

affects subsequent gene expression quantification. Theoretically, G should equal C, 

and A should equal T throughout the whole sequencing process for non-stranded 

libraries, whereas AT/GC separation is normally observed in stranded libraries. For 

DGE (Digital Gene Expression) libraries, a large variation of sequencing error in the 

first 6-7 bases is allowed due to the use of random primers in library construction. 



 

6 

 
Figure 2 GC content distribution 

The x-axis shows each base position within a read, and the y-axis shows the percentage of each base, with each base represented 

by a different color. 

2.3 Data Filtering 

Raw reads are filtered to remove reads containing adapters or reads of low quality, so 

that downstream analyses are based on clean reads. The filtering process is as follows: 

(1) Discard reads with adaptor contamination. 

(2) Discard reads when uncertain nucleotides constitute more than 10 percent of either 

read (N > 10%). 

(3) Discard reads when low quality nucleotides (base quality less than 20) constitute 

more than 50 percent of the read. 

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from TruSeqTM 

RNA and DNA Sample Prep Kits): 

NEBNext® UltraTM RNA Library Prep Kit 

RNA 5' Adapter (RA5): 

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

CTTCCGATCT-3' 

RNA 3’ Adapter (RA3): 

5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC(6-nucleotide 

index)ATCTCGTATGCCGTCTTCTGCTTG-3' 
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Figure 3 Raw Data 

Results are shown as percentage of total raw reads. 

(1) Adapter related, reads that had adapter contamination. 

(2) Containing N, reads in which uncertain nucleotides constituted more than 10 percent of the read. 

(3) Low quality, reads in which low quality nucleotides constituted more than 50 percent of the read. 

(4) Clean reads, reads that passed quality control 

2.4 Data Quality Control Summary 

Table 1 Data Production 

 

(1) Sample name: the names of samples 

(2) Raw Reads: the original sequencing reads counts 

(3) Clean Reads: number of reads after filtering 

(4) Clean Bases: clean reads number multiply read length, saved in G unit 

(5) Error Rate: average sequencing error rate, which is calculated by Qphred=-10log10(e) 

(6) Q20: percentages of bases whose correct base recognition rates are greater than 99% in total bases 

(7) Q30: percentages of bases whose correct base recognition rates are greater than 99.9% in total bases 

(8) GC content: percentages of G and C in total bases 
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3 Transcriptome Reconstruction 

3.1 Transcriptome Reconstruction 

For samples in the absence of a reference genome, clean reads need to be assembled 

to get a reference sequence for the following analysis. Trinity (Grabherr et al., 2011) 

is the software chosen to complete the transcriptome reconstruction process. 

Trinity is developed by Broad Institute and Hebrew University of Jerusalem. It is a 

professional transcriptome assembler software (comprising modules entitled 

Inchworm, Chrysalis and Butterfly). The workflow of Trinity is as follows: 

Inchworm: Constructs a k-mer dictionary from all sequenced reads (in practice, k = 

25), selects the most frequent seeding k-mer in the dictionary and extends the seed 

in each direction to form a contig assembly. 

Chrysalis: Chrysalis clusters minimally overlapping Inchworm contigs into sets of 

connected components, and constructs complete de Bruijn graphs for each 

component. Each component defines a collection of Inchworm contigs that are likely 

to be derived from alternative splice forms or closely related paralogs. 

Butterfly: Butterfly reconstructs plausible, full-length, linear transcripts by 

reconciling the individual de Bruijn graphs generated by Chrysalis with the original 

reads and paired ends. It reconstructs distinct transcripts for splice isoforms and 

paralogous genes, and resolves ambiguities stemming from errors or from 

sequences >k bases long that are shared between transcripts. The final assembled 

result file: TRINITY.fasta. 
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The sequencing data of assembled transcriptome is recorded under FASTA format as 

follows: 

>c13_g1_i1 len=263 path=[369:0-108 477:109-148 65:149-262] 

TGAAGAGGGAGGAGGCGAATTGGGTTTGGCGTGGCTGCTGTTAAGGGGCTGCAAGAGG

TG 

GAAAGGAGGACAGAGAAGATGGAAAGATGGAGACAAGGACTGATCTGGGTGGTAGCAA

CA 

GTACCTGGAAGTGGGTGTTTGGAGAAAGGGCGAAAGATGTGGTCTCTGGGAATGGCGA

TG 

GAATGGGCAGCAGCAGCAGCAGGAGTCCAGGACAGGTAGTAGCAGTGGCGGAAATTAT

AC 

CTGGGATAAGGCCCAGATCTCTG 

>c14_g1_i1 len=249 path=[131:0-128 260:129-248] 
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ATTTAGTTCTCCTATGATCAGATTTTTTAGCTCATCTTTTCTTAAAGATTTGGTCTGTTG 

AGAGGAAACATGAGAAATCAGGGAAACCCCCAAAATGACATCTAGTAATTGGAACTATTA 

TTCAGACCCTGATTGAGGGTATTGGCAAACAATTCCTATGACAAAAGTGCAATAGCTATT 

TCATTATGAGTTATGAGGAGATAGTGTTGTCAACTTTCTATTCCCCATGGCATTTAATCA 

TTTTATGAG 

Line 1 starts with ‘>’ character and followed by the id number of the transcript;‘len=’ 

shows the length of the transcript, which is the base number of the transcript; ‘path’ 

includes the pathway information from de Bruijn Graph Subcomponet. From line 2 to 

the end encodes the sequence information of the transcript. More detailed explanation 

could be found from Trinity’s website http://trinityrnaseq.github.io. 

 

3.2 Hierarchical Clustering 

Corset (Davidson et al.,2014) works by clustering contigs based on shared reads, and 

separates contigs when different expression patterns between samples are observed. 

Corset also uses the read information to filter out contigs with a low number of 

mapped read (less than 10 reads by default). 

The sequencing data of hierarchical clustering transcriptome is recorded on FASTA 

format as follows: 

>Cluster-19196.1_c113952_g2_i2 

TCATTATGAGTTATGAGGAGATAGTGTTGTCAACTTTCTATTCCCCATGGCATTTAATCA 

ATTTAGTTCTCCTATGATCAGATTTTTTAGCTCATCTTTTCTTAAAGATTTGGTCTGTTG 

CAAGAAGAAGACTGGTGAAGGAGGCCACCAAGACACCTACGAGCACTCTGACGGAGTT

AA 

AAGCATCAGTGGCTCAGATGGGAGAGACTGTACATACAACAACTGTTGCCCGGGTGCTT

C 

TCCAGTCGAAGCTGTATAGGAGGGTGAAGGCAAAGAGAAAGCCACTGTTGAAAAAGCTC

A 

TATGAAATCTCGCCTGCATTTCGCCCAAAGGCTGCGCTAGACTCCAAGGTCAATTGGAA

G 

AAGGTTCTTTGGTCTGATGAGACTAAAATTTATTTATTTG 

 

>Cluster-22704.0_c60010_g1_i1 

CACACACACACACACACACGAGGCTAAGGATTGGTGAGAGGCTGAGTCACAGGTGCTG

CCC 

TCTAGTGGTGCATGCTGCTCTTCACCCTGTTTGCTCACGCTGGGCTCAGGTCTGGGTTA

TC 

CGCTGATGACATGGGATGGTGTTCCACACAGCAGACTGACCACAGTGACCCCCCAACA

http://trinityrnaseq.github.io/
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CAG 

CGGATGGACCACAAGTGACAGACACTCCAACAGAGCC 

Header line starts with '>' character and followed by the sequence id, 

"Clusters-X.Y_c_g_i". "X" means the super cluster ID, Each super cluster contains all 

contigs that share one or more reads with another contig in the same super cluster. 

"Y" means the cluster number of the super cluster ID. "c_g_i" is the transcript id 

assembled by Trinity. More detailed explanation could be found from Corset's 

website https://github.com/Oshlack/Corset/wiki. 

3.3 Transcript Length Distribution 

Clean reads are de novo assembled by Trinity to get assembly transcriptome. Then 

Corset will perform Hierarchical Clustering to remove redundence. Afterwards the 

longest transcripts of each cluster will be selected as unigenes. Length distribution 

information of transcripts and unigenes are listed in the following tables: 

Table 2 Overview of the number of transcripts and unigenes in different length intervals 

 

 
Table 3 Overview of the length distribution of transcripts and unigenes 

 

 
The N50 length is defined as the length for which the collection of all contigs of that length or longer contains at least half of the 

total of the lengths of the contigs, and for which the collection of all contigs of that length or shorter contains at least half of the 

total of the lengths of the contigs. (When more than one value of length meets both these criteria then the N50 is the average of 

the longest and shortest lengths that meet these criteria.) The N90 statistic is smaller than or equal to the N50 statistic; it is the 

length for which the collection of all contigs of that length or longer contains at least 90% of the total of the lengths of the 

contigs, and for which the collection of all contigs of that length or shorter contains at least 10% of the total of the lengths of the 

contigs. 
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Figure 4 Length distribution of transcripts and unigene 

X-axis indicates length interval of transcript and unigene; Y-axis indicates the frequency of transcript and unigene in each length 

interval. 

3.4 Gene Functional Annotation 

3.4.1 Gene Functional Annotation 

To achieve comprehensive gene functional annotation, seven databases are applied by 

Novogene. The function and characteristics of the seven databases are as follows: 

Nr (NCBI non-redundant protein sequences): it is the formal protein sequence 

databases of NCBI, which includes protein sequence information from GenBank, 

PDB (Protein Data Bank), Swiss-Prot, PIR (Protein Information Resource), PRF 

(Protein Research Foundation) etc. 
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Nt (NCBI nucleotide sequences): it is the formal nucleotide sequence database of 

NCBI. It includes nucleotide sequence from GenBank, EMBL and DDBJ (but does 

not contain EST, STS, GSS, WGS, TSA, PAT, HTG). 

Pfam (Protein family): it is the most comprehensive collection of protein domains and 

families, represented as multiple sequence alignments and as profile hidden Markov 

models. Many proteins are composed of structural domains while the protein 

sequence of a specific structural domain possess a certain degree of conservative 

property. In Pfam database, proteins are classified into different protein families 

according to their structural domains, and the HMM statistical model of each family’s 

amino acid sequence is established by alignment of the protein sequences. According 

to the reliability of annotations, PFAM families are classified into two categories, 

Pfam-A and Pfam-B. Pfam-A family consists of a curated seed alignment containing a 

small set of representative members of the family, profile hidden Markov models 

(profile HMMs) built from the seed alignment and an automatically generated full 

alignment which contains all detectable protein sequences belonging to the family, as 

defined by profile HMM searches of primary sequence databases. Pfam-B entries are 

automatically generated from the ProDom database, and are represented by a single 

alignment. Through HMMER3 program, the established HMM model can be 

searched to annotate unigenes. More details: http://pfam.sanger.ac.uk/. 

KOG/COG: Both COG (Cluster of Orthologous Groups of proteins) and KOG 

(euKaryotic Orthologous Groups) are based on NCBI’s gene orthologous 

relationships. COG is specific to prokaryotes while KOG is specific to eukaryotes. 

According to their evolutionary relationships, COG/KOG divides the homologous 

genes from different species into different ortholog clusters. The COG collection 

currently consists of 138,458 proteins, which form 4873 COGs and the current KOG 

set consists of 4852 clusters of orthologs, which include 59,838 proteins. As genes 

from the same ortholog own the same function, the functional annotation can be 

shared to the other members from the same COG/KOG clusters. More details could 

be found from the following website: http://www.ncbi.nlm.nih.gov/COG/. 

Swiss-Prot: A manually annotated and reviewed protein sequence database. It's a high 

quality protein sequence database, which brings together experimental results, 

computed features and scientific conclusions. More details could be found from the 

following website: http://www.ebi.ac.uk/uniprot/. 

KEGG (Kyoto Encyclopedia of Genes and Genome): KEGG is a database resource 

for understanding high-level functions and utilities of the biological system, such as 

the cell, the organism and the ecosystem, from molecular-level information, 

especially large-scale molecular datasets generated by genome sequencing and other 

high-throughput experimental technologies. It contains KEGG PATHWAY, KEGG 

DRUG, KEGG DISEASE, KEGG MODULE, KEGG GENES, KEGG GENOME etc. 

http://pfam.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/COG/
http://www.ebi.ac.uk/uniprot/
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And KO system (KEGG ORTHOLOG) combines each KEGG annotation system. 

KEGG has established a complete KO annotation system which can accomplish the 

function annotation of the genome/transcriptome of a newly sequenced species. More 

details could be found from the following website: http://www.genome.jp/kegg/ . 

GO (Gene Ontology): GO is the established standard for the functional annotation of 

gene products. GO vocabulary is a controlled vocabulary used to classify the 

following functional attributes of gene products: Biological Process (BP), Molecular 

Function (MF) and Cellular Component (CC). GO term is the basic unit of GO system. 

Each term has a unique identifier. The relationship between the GO term of each 

ontology can form a Directed Acyclic Topology. More details could be found from 

the website: http://www.geneontology.org/. 

The software and parameters used in each database are as follows: 

NR, NT, SwissProt, KOG: NCBI blast 2.2.28+. For NR, NT and SwissProt databases, 

the evalue threshold is 1e-5 (Each unigene shows top10 alignment results), and 1e-3 

for KOG. We will show the top 10 for each unigene; 

PFAM, the prediction of protein structure domain: HMMER 3.0 package, hmmscan, 

the evalue threshold is 0.01; 

GO: based on the protein annotation results of NR and Pfam: Blast2GO v2.5 (Götz et 

al., 2008) and novogene script, the evalue threshold is 1e-6; 

KEGG: KAAS, KEGG Automatic Annotation Server, the evalue threshold is 1e-10; 

The statistics of successfully annotated genes by each database are shown in Table4 

The Ratio of Successfully Annotated Genes. 

Table4 The Ratio of Successfully Annotated Genes 

 
(1) The number of genes successfully annotated in NR and its percentage in total Unigene number. 

(2) The number of genes successfully annotated in NT and its percentage in total Unigene number. 

(3) The number of genes successfully annotated in KO and its percentage in total Unigene number. 

(4) The number of genes successfully annotated in Swissprot and its percentage in total Unigene number. 

http://www.geneontology.org/
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(5) The number of genes successfully annotated in Pfam and its percentage in total Unigene number. 

(6) The number of genes successfully annotated in GO and its percentage in total Unigene number. 

(7) The number of genes successfully annotated in KOG and its percentage in total Unigene number. 

(8) The number of genes successfully annotated in all the seven databases and its percentage in total Unigene number. 

(9) The number of genes successfully annotated in at least one database and its percentage in total Unigene number. 

(10) Total Unigene number and total unigene percentage. 

The venn diagram is mapped with 5 selected database annotation result from 7 

database results: 

 

4.2 Gene Annotation Results through Nr Database 

Table 5 Part of Gene Annotation Results through Nr Database 

 

(1) The gene ID from Corset result. 

(2) The longest length generated by the gene transcript. 

(3) The GenBank ID of the annotated nucleotide. 

(4) The NR ID of the annotated nucleotide. 

(5) Alignment score based on a specific score matrix. 

(6) Expected value calculated according to the score, query sequence's length and library size. Evalue essentially represents the 

false positive rate, the smaller is the better. 



 

16 

The species distribution, E-value distribution and similarity distribution plots are as 

follows: 

 

Figure 5 Nr Distribution 

Figure 1 The Species Distribution. Figure 2 The E-value Distribution. Figure 3 The Similarity Distribution. 

4.3 GO Classification 

After GO annotation, the successfully annotated genes will be grouped into three 

main GO domains: Biological Process (BP), Cellular Component (CC), Molecular 

Function (MF). 
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Figure 6 GO Classification 

X-axis is the GO term under the three main GO domains; Y-axis is the number and percentage of the genes annotated in the term 

(include its sub-term). 

4.4 KOG Classification 

KOG is divided into 26 groups. Figure 4.3 shows the classifications of the genes 

successfully annotated in KOG. 

 
Figure 7 KOG Classification 

X-axis is the names of the 26 KOG group; Y-axis is the percentage of genes annotated under this group in the total annotated 

genes. 

4.5 KEGG Classification 

The genes successfully annotated in KEGG can be classified according to the KEGG 

pathway they joined in. 
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Figure8 KEGG Classification 

Y-axis is the names of KEGG pathways; X-axis is the number of the genes annotated in the pathway and the ratio between the 

number in this pathway and the total number of annotated genes. The KEGG metabolic pathways gene involved in are divided 

into 5 branches: A: Cellular Processes, B: Environmental Information Processing, C: Genetic Information Processing, D: 

Metabolism, E: Organismal Systems. 

5 CDS Prediction 

5.1 CDS Prediction 

CDS prediction can be divided into two steps: 1. BLAST unigene according to the 

priority of NR and Swissprot databases. If the information matched, CDS is extracted 

from unigene sequences and translated into peptide sequences based on the standard 

codon table (from 5’ to 3’). 2. Unigenes with no hits in BLAST are analyzed with 

ESTScan (3.0.3) to predict their coding regions and determine their sequence 

direction. Part of results are shown as follows:  
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CDS extracted from BLAST: 

>Cluster-82483.0;orf1 len=369 frame:-3 start:370 end:2 gi|617492671|ref|XP_007578527.1| 

PREDICTED: protein PAT1 homolog 1 isoform X1 [Poecilia formosa] 

GTGCTGAGAGAAAACGGCTTCTGTTTTTATTATTGTGGTGCAATGACTTCTCTATTTGCT 

GTTTTTGGTCAGAACTCTCCTCTGTGTCGCGGCCCGTTTCCTCCCGGAGTTGGTCCGGT

C 

CTGTCTCAGATCCAACGTGCCCAGCTGCTCAACTCTCAGGTGGCTGGTTTCCCCCACGG

T 

GGGCCTCCTTTGTTACCAGGTGGTGGCTTCAGGCCGTTCTTCGGGGGCCCTCCTCCTC

CA 

CACGGTCACCGAATGGGTCCGCCGCCCCCTCACGGCCCCCCCAACCACACGCCACCCA

TT 

CGGCACAACACCACCCACCTCCACCCTCAGCATCGCCGCATGCTCACGCAGCGCATGC

AG 

AACCGAGGA 

>Cluster-74250.27752;orf1 len=477 frame:1 start:100 end:576 gi|657545700|ref|XP_008278143.1| 

PREDICTED: protein N-terminal asparagine amidohydrolase [Stegastes partitus] 

CCAGGTGATTTGAGTTGCACCTTGCTTAAGGAAATGCCTTTGTTTATTCAAAATAGAGGA 

CTTGGCCGCATAAGCTCGACGGGGGAACTATTCGAAAAATATCCACATTTACAGGAAAAT 

GCAAGAACATTTCGCTCCAAGCCGCTTGTGGATGTCGACCGAAAGTGCCTCTTGTATGT

C 

CAACAGAGAGAGTTTGCTGCAACAACACCAGCAGACAACAGTGTTTCAGTAATTGGATCT 

GATGATGCCACCACCTGCCATTTGGTTGTGCTGCGACACACTGGAAGTGGAGCTGTTTG

C 

CTTGCTCACTGTGATGGTTCCAGTACCAGGTCTGAAGTCCCGCTCCTTGTGAGAGCTGT

C 

ATGTCACTGAGTAACGTCAGTAAGGAGGGCAGGTATGAAACAGGCAAACATAAAAGTGC

T 

CCTCTTATTCAGATGTTCTTTATTTCCTTTCCTTTGCTGTCTGTTACGCAGGCTTGA 

header: >(sequence ID, the only identifier for the gene): (orf1, pridicted ORF id, one 

gene may have two or more pridicted ORFs) len: (the base length of this ORF) frame: 

(the reading frame of this ORF in the original gene, '-' represents the minus strand) 

start: (the start position of this ORF in the original gene) end: (the end position of this 

ORF in the original gene) (descriptions of the gene blasted protein) 

CDS predicted by ESTScan: 

>Cluster-23194.0; len=120 start:820 end:700; minus strand 

ATGGACCCGACGCAGTCTTCGGGTCGGAGCAGCTGTAAACCTCCTGCTGTGCTCTCGTC

G 

AAGGAGTCGGTCAGCTTGACTCTTGGACAGAGACGAGGTTTAGTCACTGCTCAGGCGTA
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A 

>Cluster-76416.0; len=194 start:1 end194 

ATGATCAATGGAAGGGGGATGAGGATGCAAATGGATGGTTTGATTATGCCTCTGCAAAA

A 

AATGATGGTGATTTCAATTCAGCAATGGCTGTAATTTTCCAGGCTAAAATGGGACTTGCC 

AATTCAAGGGAGAATGGATTTAAAGGGAAGCATGCATGGAAAGTGAGCCCCATAGGTGT

T 

TTCATCATTTAA 

header: >(sequence ID, the only identifier for the gene); (a represents another ORF of 

this gene) len: (the base length of this ORF) start: (the start position of this ORF in the 

original gene) end: (the end position of this ORF in the original gene)(minus strand 

represents that this ORF is the minus strand in the original gene, Otherwise, it's the 

positive strand) 

6 SNP and INDEL 

6.1 SNP and INDEL 

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring 

commonly within a population (e.g. 1%) in which a single nucleotide in the genome, 

or other shared sequences, differs between members of a biological species or paired 

chromosomes. Two SNP variation types, namely transition and transversions, occur 

with a probability ratio of 1:2. SNPs occur most often in CG sequences, resulting in C 

to T transitions, which are associated with the tendency of C to be methylated in CG 

sequences. In general, a canonical SNP should be present in more than 1% of the 

whole population. In contrast to SNPs, INDEL refers to insertions or deletions of 

small fragments (one or more nucleotides) when comparing to reference genome. 

Analysis tools, such as Samtools and Picard, are used to sort the reads according to 

the genome coordinates, followed by screening out repeated reads. Finally, GATK3 is 

used to carry out SNP calling and INDEL calling. After filtering, results such as those 

shown in the following table are obtained, in which INDEL and SNPs share the same 

columns. 

Table 6 SNP Results 

 

(1) Gene ID of SNP. 

(2) Position of SNPs. 
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(3) Reference genotype. 

(4) SNP genotype (Alternative genotype). 

(5) Lettered columns show the genotype of each sample in the locus. The number before "," represents the number of reads 

supporting REF. The number after "," represents the number of reads supporting ALT. Number “0” means that there is no read 

supporting the locus. 

3.7. SSR Analysis 

3.7.1 SSR Analysis 

Simple sequence repeats (SSR) or microsatellites are the repetitive nucleotide 

sequences of motifs of length 1-6 base pairs. They are scattered throughout the 

genomes of all the known organisms ranging from viruses to eukaryotes. MISA(v1.0, 

default parameters; Minimum number of repeats of each unit size is: 1-10; 2-6; 3-5; 

4-5; 5-5; 6-5) is used for the SSR detection of unigenes. More details can be found 

from the following website:http://pgrc.ipk-gatersleben.de/misa/misa.html.  
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Table 7 SSR analysis results 

 

(1) Gene ID of SSR analysis. 

(2) SSR ID of each unigene. 

(3) SSR type: c, Complex repetitive type; p1, Mono-base repeat; p2, Di-bases repeat; p3, the three Tri-base repeat. 

(4) The repeat sequence. 

(5) The size of repeated sequence. 

(6) The start position of repeated sequence. 

(7) The end position of repeated sequence. 

(8) The position of repeat regions. 

 
Figure 9 Distribution of SSR Motifs 

The y-axis number is correspond with the number of repeat counts with different color,the z-axis is the number of SSR.  
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3.7.2 SSR Primer Design 

Primer3 (2.3.5 version, the default parameters) is used to design SSR primer. 

Table 8 Primer Design of SSR 

 

(1) Gene id. 

(2) The sequence of forword primer1. 

(3) The annealing Temperature of primer1. 

(4) The size of primer1. 

(5) The sequence of reverse primer1. 

(6) The annealing Temperature of primer2. 

(7) The size of primer2. 

(8) The size of the product. 

(9) The start position of primer. 

(10) The end position of primer. 

3.8 Gene Expression Analysis 

3.8.1 Reference Alignment 

De novo transcriptome filtered by Corset is used as a reference(ref). RSEM(Li et al., 

2011) will map reads back to transcriptome and quantify the expression level. The 

summary of mapping results are shown as follows: 

Table 9 Overview of the Alignment Situation 

 

 
(1) Sample name 

(2) Clean reads number. 

(3) Total number of reads that can be mapped to the reference genome. 
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3.8.2 Summary of Gene Expression Levels 

To calculate the gene expression level, RSEM analysed the mapping results of Bowtie, 

and then got the read count for each gene of each sample. Furthermore, converted 

them into FPKM value. In RNA-seq, FPKM, short for the expected number of 

Fragments Per Kilobase of transcript sequence per Millions base pairssequenced, is 

the most commonest method of estimating gene expression levels, which takes into 

account the effects of both sequencing depth and gene length oncounting of fragments. 

The results (part of all results) are shown in Table10. 

Table 10 Gene Expression Summary 

 

(1) Gene ID 

(2) Sample Name 

(3) The read count value of each sample. 

(4) The FPKM value of each sample. 

3.8.3 FPKM Density Distribution 

Density distribution of FPKM can display the overall gene express levels. 

 
Figure 10 FPKM Density Distribution 

The x-axis shows log10(FPKM) and the y-axis shows the density of log10(FPKM). 
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3.9 RNA-seq Advanced QC 

3.9.1 Sample Correlation 

Biological replicates are necessary for any biological experiment, including those 

involving RNA-seq technology (Hansen et al.). In RNA-seq, replicates have a 

two-fold purpose. First, they demonstrate whether the experiment is repeatable, and 

secondly, they can reveal differences in gene expression between samples. The 

correlation between samples is an important indicator for testing the reliability of the 

experiment. The closer the correlation coefficient is to 1, the greater the similarity of 

the samples. ENCODE suggests that the square of the Pearson correlation coefficient 

should be larger than 0.92, under ideal experimental conditions. 

 
Figure 11 Sample Correlation 

If the samples are more than 4 groups, then only present the scatter diagrams between biological replicates. The scatter diagrams 

demonstrate the correlation coefficient between samples; R2, the square of the Pearson coefficient. Heat maps of the correlation 

coefficient between samples are also shown. 

3.10 Gene Expression Difference Analysis 

3.10.1 Comparision between Gene Expression Levels 

To compare gene expression levels under different conditions, an FPKM distribution 

diagram and box plot are used. For biological replicates, the final FPKM would be the 

mean value. 
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Figure 12 Different Gene Expression Levels under Different Experimental Conditions 

Figure 1: The x-axis is gene's log10(FPKM) value. The y-axis is the density of log10(FPKM)value. 

Fugure 2: Box plot of FPKM, the x-axis is the sample names and the y-axis is log10(FPKM+1). 

3.10.2 List of Differentially Expressed Genes 

The input data for differential gene expression analysis are readcounts from gene 

expression level analysis. The differential gene expression analysis contains three 

steps: 

1)Readcounts Normalization; 

2)Model dependent p-value estimation; 

3)FDR value estimation based on multiple hypothesis testing. 

Different softwares and parameter sets are applied in different situations. The analysis 

methods are listed below: 

 

The readcount value of the ith gene in the jth sample is Kij, then 

Negative binomial distribution: Kij ～ NB(μij,σij2) 

Poisson distribution: Kij ～ P(μij) 
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Table 11 Differentially Expressed Genes 

 
(1) Gene ID 

(2) treat: The read count values of sample1after normalization. 

(3) CK: The read count values of sample2 after normalization. 

(4) log2(Group1/Group2) 

(5) The p-value. 

(6) The p-value after normalization. The smaller the p-adjusted value is, the more significant is the difference. 

3.10.3 Filtering the Differential Gene Expression 

Volcano plots can be used to infer the overall distribution of differentially expressed 

genes. 

For experiments with biological replicates, as the DESeq already eliminates the 

biological variation, our threshold is normally set as: padj < 0.05. 

 
Figure 13 Volcano Plot 

The x-axis shows the fold change in gene expression between different samples, and the y-axis shows the statistical significance 

of the differences. Statistically significant differences are represented by red dots.  
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3.10.4 Venn Diagram of Expression Gene 

When there are only 2 samples or groups, venn diagram of expression genes will be 

plotted. 

 
Figure 14 Venn Diagram of Expression Gene 

The sum of the numbers in each circle is the total number of genes expressed within a group, and the overlap represents the genes 

expressed in common between groups. Use Fpkm > 0.3 as the criterion. 

3.10.5 The Venn Diagram of Differentially Expressed Genes 

The Venn diagram presents the number of genes that are uniquely expressed 

differentially within each group, with the overlapping regions showing the number of 

genes that are expressed in two or more groups. (The diagram depicts only the results 

for groups 2, 3, 4 and 5). 

 

Figure 15 Venn diagram of differentially expressed genes 

The sum of the numbers in each circle is the total number of genes expressed within a group, and the overlap represents the genes 

expressed in common between groups. 
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3.10.6 Cluster Analysis of Gene Expression Differences 

Cluster Analysis is used to find genes with similar expression patterns under various 

experimental conditions. By clustering genes with similar expression patterns, it may 

be possible to discern unknown functions of previously characterized genes or the 

function of unknown genes. In hierarchical clustering, areas of different colors denote 

different groups (clusters) of genes, and genes within each cluster may have similar 

functions or take part in the same biological process. In addition to the FPKM cluster, 

the H-cluster, K-means and SOM are also used to cluster the log2(ratios). Genes 

within the same cluster exhibit the same trends in expression levels under different 

conditions. 

 

Figure 16 Cluster Analysis 

Figure 1: the overall results of FPKM cluster analysis, clustered using the log10(FPKM+1) value. Red denotes genes with high 

expression levels, and blue denotes genes with low expression levels. The color range from red to blue represents the 

log10(FPKM+1) value from large to small. Figure 2: log2(ratios) line chart. Each grey line in a subline chart represents the 

relative expression value of a gene cluster under different experimental conditions, and the blue line represents the mean value. 

The x-axis shows the experimental condition and the y-axis shows the relative expression value. 

3.11 GO Enrichment Analysis of DEGs 

3.11.1 GO Enrichment Analysis of DEGs 

Gene Ontology (http://www.geneontology.org/) is a major bioinformatics initiative to 

unify the presentation of gene and gene product attributes across all species. DEGs 

refer to differentially expressed genes.
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Table 12 Significantly Enriched GO terms in DEGs 

 
(1) Gene Ontology entry. 

(2) Detailed description of Gene Ontology. 

(3) GO types, including cellular_component, biological_process and molecular_function. 

(4) p-value in hypergenometric test. 

(5) Corrected P-value; GO with corrected p-value < 0.05 are significantly enriched in DEGs. 

(6) Number of DEGs with GO annotation. 

(7) Number of all reference genes with GO annotation. 

 

Figure 17 GO enrichment Bar Chart of DEGs 

The x-axis shows GO term in the sub-level of the GO three main domains, and the y-axis shows the number of the differential 

expression genes annotated in this term and the ratio between this number and the total number of annotated differential 

expression genes. From left to right is the three main GO domains: biological_process, cell_composition and 

molecular_function. 

 

3.11.2 GO Enrichment DAG Figure 

DAG (Directed Acyclic Graph, DAG) can visually display the enriched GO term of 

differential expression genes and its hierarchy. (Figure17) illustrates the topGO DAGs. 

Branch means hierarchical relationship and the function ranges become more and 

more specific from top to bottom. DAG of biological process, molecular function and 

cellular component are shown respectively in the report. 
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Figure 18 Illustration of topGO DAG 

Each node represents a GO term, and TOP10 GO terms are boxed. The darker the color is, the higher is the enrichment level of 

the term. The name and p-value of each term are present on the node. 

3.12 KEGG Pathway Enrichment Analysis 

3.12.1 KEGG Pathway Enrichment Analysis 

The interactions of multiple genes may be involved in certain biological functions. 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually 

curated databases dealing with genomes, biological pathways, diseases, drugs, and 

chemical substances. KEGG is utilized for bioinformatics research and education, 

including data analysis in genomics, metagenomics, metabolomics and other omics 

studies. Pathway enrichment analysis identifies significantly enriched metabolic 

pathways or signal transduction pathways associated with differentially expressed 

genes compared with the whole genome background. The formula is: 

 

Here, N is the number of all genes with a KEGG annotation, n is the number of 

DEGs in N, M is the number of all genes annotated to specific pathways, and m is 

number of DEGs in M. 
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Table 13 KEGG Enrichment List 

 
(1) Term: Description of KEGG pathways 

(2) ID: KEGG ID. 

(3) Sample Number: Number of DGEs with pathway anntation. 

(4) Background Number: Number of all reference genes with pathway annotation. 

(5) P-value: P-value in hypergeometric test. 

(6) Corrected P-value: Pathways with corrected p-value < 0.05 are significantly enriched in DEGs. 

3.12.2 KEGG Enrichment Scattered Plot 

KEGG enrichment scattered plot shows the DEGs enrichment analysis results in 

KEGG pathway. The degree of KEGG enrichment is measured by Rich factor, 

q-value and the number of genes enriched in this pathway. Rich factor refers to the 

ratio of the DEGs number in the pathway and the number of all genes annotated in the 

pathway. Q-value is the pvalue after normalization and its range is [0,1]. The smaller 

q-value is, the more significant the enrichment is. The top20 significantly DEGs 

enriched pathways are displayed in the report. If the enriched pathways are less than 

20, all enriched pathways are displayed. 

 
Figure 19 KEGG Enrichment Scatter Plot of DEGs 

The y-axis represents the name of the pathway and the x-axis represents the Rich factor. Dot size represents the number of 

different genes and the color indicates the q-value. 
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3.12.3 KEGG Enrichment Pathway 

KEGG enrichment pathway shows the DEGs significantly enriched pathways. In the 

diagram, if this node contains up-regulated genes, the KO node is labeled in red. If the 

node contains up-regulated genes, the KO node is labeled in green. If the node 

contains both up and down-regulated genes, the labeled color is yellow. 

 

Figure 20 Diagram Showing Significantly Enriched KEGG Pathway  
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4 Appendix 

4.1 Result Directory Lists 

Click to open the result directory. (Note: Please make sure the report directory and the 

result directory is under the same directory). Result Directory Lists: html 

../../NHHWXXXXXX_species_results  

├── 1. RawData: the rawdata of sequencing  

├── 2. QC:  the results of quality control  

│   ├── 2.1. ErrorRate: the results of ErrorRate distribution  

│   ├── 2.2. GC: the results of GC distribution  

│   ├── 2.3. ReadsClassification: Reads Composition display  

│   └── 2.4. CleanData_QCsummary: the results of cleandata  

├── 3. TranscriptomeAssembly: the results of TRINITY  

│   ├── 3.1. AssembledTranscriptome: the sequences of TRINITY  and Corset 

│   └── 3.2. AssemblyINFO: the results of trinity and unigene  

├── 4. GeneFunctionalAnnotation: the results of gene functional annotation  

│   ├── 4.1. GeneFunctionalAnnotation: the results of gene functional annotation 

│   ├── 4.2. GOclassification: GO annotation results  

│   ├── 4.3. KOGclassification: KOG annotation results  

│   └── 4.4. KEGGclassification: KEGG annotation results  

├── 5. CDSprediction: CDS prediction results  

├── 6. SNPcalling: SNP/InDel analysis results  

├── 7. SSRdetection: SSR analysis results  

├── 8. GeneExprQuantification: gene expression analysis  

│   ├── 8.1. GeneExprQuantification: gene expression analysis  

│   └── 8.2. GeneExpContrast: the comparison chart of Gene expression level  

├── 9. RNA-seqQC: RNA-seq quality control evaluation  

│   └── 9.1. Correlation: the results of correlation betwenn samples  

├── 10. DiffExprAnalysis: the results of differential expression analysis  

│   ├── 10.1. DiffExprAnalysis: the results of differential expression analysis  

│   ├── 10.2. DEGsFilter: differential genes selection（Volcanic diagram）  

│   ├── 10.3. VennDiagram: the diagram of venn  

│   ├── 10.4. DEGcluster: the cluster results of differential genes  

│   └── 10.5. DEGannotation: the annotation results of differential genes  

├── 11. DEG_GOenrichment: GO enrichment analysis results of differential genes 

└── 12. DEG_KEGGenrichment: KEGG enrichment analysis results of differential 

genes(all-all differential genes, up-up-regulation differential gene, 

down-down-regulation differential gene)  
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4.2 Software List 

Software and Parameter 

 

 

4.3 Novofinder Manual 

We developed a powerful software Novofinder to help customer browse and integrate 

bioinforamtic results. Results could be accessed through Gene id, key word of gene 

function, expression level and other customer defined way. Through Novofinder, 

customer could easily get well-organized gene sequence, functional annotation, 

SNP/InDel, SSR, quantification, differentially expressed gene analysis and 

enrichement results. Hope novofinder could accelerate your research process! 

Novofinder Manual: PDF  
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