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1 Library Preparation and Sequencing 

From the RNA sample to the final data, each step, including sample test, library 

preparation, and sequencing, influences the quality of the data, and data quality 

directly impacts the analysis results. To guarantee the reliability of the data, quality 

control (QC) is performed at each step of the procedure. The workflow is as follows: 

 

 

1.1 Total RNA Sample QC 

All samples need to pass through the following three steps before library construction: 

(1) Nanodrop: Preliminary quantitation 

(2) Agarose Gel Electrophoresis: tests RNA degradation and potential contamination 

(3) Agilent 2100: checks RNA integrity and quantitation  
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1.2 Library Construction 

After the QC procedures, mRNA from eukaryotic organisms is enriched using 

oligo(dT) beads. For prokaryotic samples, rRNA is removed using a specialized kit 

that leaves the mRNA. The mRNA from either eukaryotic or prokaryotic sources is 

then fragmented randomly in fragmentation buffer, followed by cDNA synthesis 

using random hexamers and reverse transcriptase. After first-strand synthesis, a 

custom second-strand synthesis buffer (Illumina) is added with dNTPs, RNase H and 

Escherichia coli polymerase I to generate the second strand by nick-translation. The 

final cDNA library is ready after a round of purification, terminal repair, A-tailing, 

ligation of sequencing adapters, size selection and PCR enrichment. The workflow 

chart is as follows: 
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1.3 Library QC 

Library concentration was first quantified using a Qubit 2.0 fluorometer (Life 

Technologies), and then diluted to 1 ng/µl before checking insert size on an Agilent 

2100 and quantifying to greater accuracy by quantitative PCR (Q-PCR) (library 

activity >2 nM). 

1.4 Sequencing 

Libraries are fed into HiSeq machines according to activity and expected data volume. 

2 Analysis Workflow 

The analysis workflow for data without a reference genome is as follows: 
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3 Project Results 

1 Raw data 

The original raw data from Illumina HiSeqTM are transformed to Sequenced Reads by 

base calling. Raw data are recorded in a FASTQ file, which contains sequence 

information (reads) and corresponding sequencing quality information. 

Every read in FASTQ format is stored in four lines as follows: 

@HWI-ST1276:71:C1162ACXX:1:1101:1208:2458 1:N:0:CGATGT 

NAAGAACACGTTCGGTCACCTCAGCACACTTGTGAATGTCATGGGATCCAT 

+ 

#55???BBBBB?BA@DEEFFCFFHHFFCFFHHHHHHHFAE0ECFFD/AEHH 

Line 1 begins with a '@' character and is followed by the Illumina Sequence 

Identifiers and an optional description. 

Line 2 is the raw sequence read. 

Line 3 begins with a '+' character and is optionally followed by the same sequence 

identifier and description. 

Line 4 encodes the quality values for the sequence in Line 2, and must contain the 

same number of characters as there are bases in the sequence (Cock et al.). 

Illumina Sequence Identifier details: 

Identifier Meaning

HWI-ST1276 Instrument – unique identifier of the sequencer

71 run number – Run number on instrument

C1162ACXX FlowCell ID – ID of flowcell

1 LaneNumber – positive integer

1101 TileNumber – positive integer

1208 X – x coordinate of the spot. Integer which can be negative

2458 Y – y coordinate of the spot. Integer which can be negative

1 ReadNumber - 1 for single reads; 1 or 2 for paired ends

N whether it is filtered - NB：Y if the read is filtered out, not in the delivered fastq file, N otherwise

0 control number - 0 when none of the control bits are on, otherwise it is an even number

CGATGT Illumina index sequences  
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2 Data Quality Control 

2.1 Error Rate 

The error rate for each base can be transformed by the Phred score as in equation 

1(equation 1: Qphred = -10log10(e)). The relationship between Phred quality scores Q 

and base-calling error "e" is given below: 

Base Quality and Phred score relationship with the Illumina CASAVA v1.8 software: 

Phred score Base Calling error rate Base Calling correct rate Q-sorce

10 1/10 90% Q10

20 1/100 99% Q20

30 1/1000 99.9% Q30

40 1/10000 99.99% Q40  

Sequencing error rate and base quality depend on the sequencing machine, reagent 

availability, and the samples. 

(1) Error rate increases as the sequencing reads are extended and sequencing reagents 

become more and more scarce. 

(2) The first six bases have a relatively high error rate due to the random hexamers 

used in priming cDNA synthesis (Jiang et al.). 

 

Figure 3.2.1 Error Rate Distribution 

The x-axis shows the base position along each sequencing read and the y-axis shows the base error rate. 
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2.2 A/T/G/C Content Distribution 

GC content distribution is evaluated to detect potential AT/GC separation, which 

affects subsequent gene expression quantification. Theoretically, G should equal C, 

and A should equal T throughout the whole sequencing process for non-stranded 

libraries, whereas AT/GC separation is normally observed in stranded libraries. For 

DGE (Digital Gene Expression) libraries, a large variation of sequencing error in the 

first 6-7 bases is allowed due to the use of random primers in library construction. 

 
Figure 3.2.2 GC content distribution 

The x-axis shows each base position within a read, and the y-axis shows the percentage of each base, with each base represented 

by a different color. 

2.3 Data Filtering 

Raw reads are filtered to remove reads containing adapters or reads of low quality, so 

that downstream analyses are based on clean reads. 

The filtering process is as follows: 

(1) Discard reads with adaptor contamination. 

(2) Discard reads when uncertain nucleotides constitute more than 10 percent of either 

read (N > 10%). 

(3) Discard reads when low quality nucleotides (base quality less than 20) constitute 

more than 50 percent of the read. 

RNA-seq Adapter sequences (Oligonucleotide sequences of adapters from TruSeqTM 

RNA and DNA Sample Prep Kits): 

RNA 5' Adapter (RA5):  
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5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC

TTCCGATCT-3' 

RNA 3' Adapter (RA3):  

5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC(6-nucleotide 

index)ATCTCGTATGCCGTCTTCTGCTTG-3' 

 

 

Figure 3.2.3 Raw Reads Components 

Results are shown as percentage of total raw reads. 

(1) Adapter related: reads that had adapter contamination. 

(2) Containing N: reads in which uncertain nucleotides constituted more than 10 percent of the read. 

(3) Low quality: reads in which low quality nucleotides constituted more than 50 percent of the read. 

(4) Clean reads: reads that passed quality control. 

2.4 Data Quality Control Summary 

Table 2.1 Data Production 

Sample

name
Raw reads Clean reads Clean bases

Error

rate(%)
Q20(%) Q30(%)

GC

content(%)

CK1 64702586 61323654 9.2G 0.01 97.48 93.96 52.14

CK2 59175436 56052998 8.41G 0.01 97.58 94.16 52.11

CK3 57777524 54885692 8.23G 0.01 97.58 94.18 52.14

treat1 46226950 43922506 6.59G 0.01 97.53 94.06 51.73

treat2 51332556 48744902 7.31G 0.01 97.56 94.14 51.94

treat3 46276058 43921706 6.59G 0.01 97.44 93.86 51.79  
Detail statistics of sequencing data: 

(1) Sample name: the names of samples 

(2) Raw Reads: the original sequencing reads counts 
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(3) Clean Reads: number of reads after filtering 

(4) Clean Bases: clean reads number multiply read length, saved in G unit 

(5) Error Rate: average sequencing error rate, which is calculated by Qphred=-10log10(e) 

(6) Q20: percentages of bases whose correct base recognition rates are greater than 99% in total bases 

(7) Q30: percentages of bases whose correct base recognition rates are greater than 99.9% in total bases 

(8) GC content: percentages of G and C in total bases 

3 Mapping to a Reference Genome 

Algorithm for mapping sequences: appropriate software is chosen according to the 

characteristics of the reference genome. In general, TopHat2 is chosen for animal and 

plant genomes, and Bowtie2 is chosen for the genomes of bacteria and other species 

with a high gene density. The mismatch parameter is set to two, and other parameters 

are set to default. Appropriate parameters are also set, such as the longest intron 

length. Only filtered reads are used to analyze the mapping status of RNA-seq data to 

the reference genome. This process is shown by the following figure: 

 

The TopHat2 algorithm can be divided into three parts: 

(1) Align reads to a reference transcriptome (optional).  
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(2) Map reads to the exons.  

(3) Reads are segmented and then mapped to the adjacent exons. 

When the reference genome is appropriate and the experiment is contamination-free, the TMR (Total Mapped Reads or 

Fragments) should be larger than 70% and MMR (Multiple Mapped Reads or Fragments) should be no more than 10%. 

 

3.1 Overview of Mapping Status 

Table 3.1 Overview of Mapping Status 

Sample_name CK1 CK2 CK3 treat1 treat2 treat3

Total reads 61323654 56052998 54885692 43922506 48744902 43921706

Total mapped 52075296 (84.92%) 47491790 (84.73%) 46740224 (85.16%) 37360618 (85.06%) 41258260 (84.64%) 37088412 (84.44%)

Multiple mapped 755991 (1.23%) 753703 (1.34%) 637373 (1.16%) 576324 (1.31%) 535660 (1.1%) 642777 (1.46%)

Uniquely mapped 51319305 (83.69%) 46738087 (83.38%) 46102851 (84%) 36784294 (83.75%) 40722600 (83.54%) 36445635 (82.98%)

Reads map to '+' 25633110 (41.8%) 23350492 (41.66%) 23033558 (41.97%) 18375086 (41.84%) 20343808 (41.74%) 18211638 (41.46%)

Reads map to '-' 25686195 (41.89%) 23387595 (41.72%) 23069293 (42.03%) 18409208 (41.91%) 20378792 (41.81%) 18233997 (41.51%)

Non-splice reads 37477100 (61.11%) 34145053 (60.92%) 33975152 (61.9%) 26548912 (60.44%) 29472150 (60.46%) 26693312 (60.77%)

Splice reads 13842205 (22.57%) 12593034 (22.47%) 12127699 (22.1%) 10235382 (23.3%) 11250450 (23.08%) 9752323 (22.2%)  

Mapping Results Details: 

(1) Total number of filtered reads (Clean data). 

(2) Total number of reads that can be mapped to the reference genome. In general, this number should be larger than 70% when 

there is no contamination and the correct reference genome is chosen. 

(3) Number of reads that can be mapped to multiple sites in the reference genome. This number is usually less than 10% of the 

total. 

(4) Number of reads that can be uniquely mapped to the reference genome. 

(5) Number of reads that map to the positive strand (+) or the minus strand (-). 

(6) Splice reads can be segmented and mapped to two exons (also named junction reads), whereas non-splice reads can be 

mapped entirely to a single exon. The ratio of splice reads depends on the insert size used in the RNA-seq experiments. 

3.2 Mapped Regions in Reference Genome 

Mapped regions can be classified as exons, introns, or intergenic regions. 

Exon-mapped reads should be the most abundant type of read when the reference 

genome is well-annotated. Intron-reads may be derived from pre-mRNA 

contamination or intron-retention events from alternative splicing. Reads mapped to 

intergenic regions are mainly because of weak annotation of the reference genome. 
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Figure 3.1 Classification of Reads According to Mapped Region. 

3.3 Distribution of Mapped Reads in Chromosomes 

To obtain an overview of the distribution of mapped reads in chromosomes, the 

"window size" is set to 1K, the median number of reads mapped to the genome inside 

the window is calculated, and transformed to the log2value. In general, the longer the 

whole chromosome, the more total number of mapped reads within it would 

be(Marquez et al.). 

 
Figure 3.2 Distribution Plot of Mapped Reads in Chromosomes. 

Two panels are shown for each sample. In the left panel, the X-axis shows the length of the chromosomes (in Mb), and the Y-axis 

indicates the log2 of the median of read density. Green and red indicate, respectively, the positive and negative strands. In the 
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right panel, the X-axis shows the length of the chromosomes, and the Y-axis indicates the number of mapped reads in each 

chromosome. The grey region indicates the 95% confidence interval. 

3.4 Visualization of Mapping Status of Reads 

Files are provided in BAM format, a standard file format that contains mapping 

results, and the corresponding reference genome and gene annotation file for some 

species. The Integrative Genomics Viewer (IGV) is recommended for visualizing data 

from BAM files. The IGV has several features: (1) it displays the positions of single 

or multiple reads in the reference genome, as well as read distribution between 

annotated exons, introns or intergenic regions, both in adjustable scale; (2) displays 

the read abundance of different regions to demonstrate their expression levels, in 

adjustable scale; (3) provides annotation information for both genes and splicing 

isoforms; (4) provides other related annotation information; (5) displays annotations 

downloaded from remote servers and/or imported from local machines. 

 

Figure 3.3 IGV interface
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4 Alternative Splicing Analysis 

Alternative splicing (AS) is a universal gene regulation mechanism in most 

eukaryotes. Eukaryotic gene sequences consist of intronic and exonic regions. During 

RNA processing, the exons are retained in mature mRNA while introns are excluded 

by spliceosome. Some pre-mRNAs may have different splicing patterns in different 

condition and yeild different protein isoforms, which increases the biologocial 

complexity and adaptability of eukaryotic species. 

rMATS (replicate multivariate analysis of transcript splicing) is designed for detection 

of differential alternative splicing from RNA-seq data. rMATS uses a hierarchical 

model to simultaneously account for sampling uncertainty in individual replicates and 

variability among replicates. The classification of alternative splicing events by 

rMATS are defined below: 

 
The 5 AS types can be defined as: 

(1) SE: Skipped exon  

(2) MXE: Mutually exclusive exon  

(3) A5SS: Alternative 5' splice site  

(4) A3SS: Alternative 3' splice site  

(5) RI: Retained intron 
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4.1 Classification and statistics of AS Events 

Classification and statistics of AS events were applied to each group of RNA-seq data 

with biological replicates. Then the quantitative level of each class of alternative 

splicing events was estimated, and differential AS analysis between treatment and 

control groups are applied. rMATS adopts two quantification methods parallelly, 

namely evaluating splicing with reads span splicing junctions only, and with both 

reads on target and reads span splicing junctions. The difference between two 

methods is that reads targeting alternatively spliced exons (striped regions in the 

above figure) are eliminated by the method of evaluating splicing with only reads 

span splicing junctions. Customers may choose one of the evaluating methods for 

further studies accordingly. 

 
Figure 4.1 Classification of AS Events. 

The Y-axis illustrates the 5 types of AS events, and the X-axis illustrates the counts for each type of AS events, respectively. JC. 

only: only the reads span splicing junctions are taken into account; JC + reads On Target: both the reads span splicing junctions 

and the reads on target are taken into account.  

Table 4.1 Statstistics of AS Events 

EventType NumEvents.JC.only SigEvents.JC.only
NumEvents.JC+reads

OnTarget

SigEvents.JC+readsO

nTarget

SE 2717 4 (2:2) 2765 7 (4:3)

MXE 690 2 (1:1) 727 2 (1:1)

A5SS 1536 4 (2:2) 1585 6 (3:3)

A3SS 1361 0 (0:0) 1391 0 (0:0)

RI 914 2 (1:1) 922 2 (1:1)  

(1) event_type: AS event types(SE,MXE,A5SS,A3SS,RI). 

(2) NumEvents.JC.only: the total number of AS events, with only reads span splicing junctions taken into account. 

(3) SigEvents.JC.only: the total number of differential AS events, with only reads span splicing junctions taken into 

account(up:down). 
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(4) NumEvents.JC+readsOnTarget: the total number of AS events, with both reads span splicing junctions and reads on target 

exons taken into account. 

(5) SigEvents.JC+readsOnTarget: the total number of differential AS events, with both reads span splicing junctions and reads on 

target exons taken into account. 

4.2 Statistics on expression level of different AS types for individual genes 

We analyze the expression level of different AS types for individual genes in both 

treatment and control groups of samples. The threshold of differential AS analysis is 

set as FDR < 0.05. The AS events in the below table were evaluated with only reads 

span splicing junctions. 

Table 4.2 Overview of expression level of different AS types for individual genes 

ID GeneID geneSymbol chr strand IJC_SAMPLE_1
SJC_SAMPLE_

1
IJC_SAMPLE_2 SJC_SAMPLE_2 PValue FDR

1409
"FBgn002795

0"
"MBD-like" 3R + 430 127 191 134 1.15E-05 0.009071344

2682
"FBgn002758

0"
"CG1516" 2R - 7 195 19 52 1.34E-05 0.009071344

3029
"FBgn003450

4"
"CG8929" 2R + 308 226 138 241 4.31E-06 0.009071344

3088
"FBgn003405

1"
"Mlf" 2R - 72 213 137 139 1.25E-05 0.009071344

 

(1) ID: Unique AS event ID given by rMATS. 

(2) GeneID: gene ID for genes with AS events. 

(3) gene symbol: gene symbol, 'NA' for none. 

(4) chr: Chromosome ID. 

(5) strand: Strand specificity. 

(6) IJC_SAMPLE_1: inclusion junction counts for SAMPLE_1, replicates are separated by comma.  

(7) SJC_SAMPLE_1: exclusion junction counts for SAMPLE_1, replicates are separated by comma. 

(8) IJC_SAMPLE_2: inclusion junction counts for SAMPLE_2, replicates are separated by comma. 

(9) SJC_SAMPLE_2: exclusion junction counts for SAMPLE_2, replicates are separated by comma. 

(10) P value: p-value. 

(11)FDR: adjusted p-value. 
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5 Novel Gene Prediction 

5.1 Novel Gene Prediction 

Mapping information from all samples is combined and placed as input into the 

regular Cufflinks assembler. The assembled transcriptomes are then compared to the 

reference transcripts to determine if they are sufficiently different to be considered 

novel. In brief, in this process we can (1) identify novel genes, (2) identify novel 

exons of novel genes, and (3) optimize the start and end information of known 

transcripts. The outputs are provided as GTF files; more information about GTF 

format is available at (http://mblab.wustl.edu/GTF22.html). 

Table 5.1 Annotation for novel transcripts 

seqname source feature start end score strand frame attributes

211000022278312 novelGene exon 931 1010 . - . gene_id "Novel00001"; transcript_id "Novel00001.1"; exon_number "2";

211000022278312 novelGene exon 1120 1258 . - . gene_id "Novel00001"; transcript_id "Novel00001.1"; exon_number "3";

211000022279056 novelGene exon 465 472 . + . gene_id "Novel00002"; transcript_id "Novel00002.1"; exon_number "1";

211000022279056 novelGene exon 540 560 . + . gene_id "Novel00002"; transcript_id "Novel00002.1"; exon_number "2";  
1) seqname: Chromosome ID. 

(2) source: Source ID. 

(3) feature: Structure type. 

(4) start: Start coordinate 

(5) end: End coordinate 

(6) score: Not related 

(7) strand: Strand specificity 

(8) frame: Not related 

(9) attributes: Includes gene ID, transcript ID etc. 

5.2 Optimization of known gene attributes 

Table 5.2 Optimization of known gene 

attributes

 

(1) Gene_id: Unique gene ID from the reference GTF file. 

(2) Chromosome: Chromosome/scaffold ID 

(3) Strand: Strand specificity 

(4) Original_span: Gene start and end positions in reference. 

(5) Assembled_span: Gene start and end positions in assembled transcriptome. 

http://mblab.wustl.edu/GTF22.html
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6 SNP & InDel 

6.1 SNP & InDel 

A single nucleotide polymorphism (SNP) is a DNA sequence variation occurring 

commonly within a population (e.g. 1%) in which a single nucleotide in the genome, 

or other shared sequence, differs between members of a biological species or paired 

chromosomes. Two types of variation occur with SNPs, namely transitions and 

transversions, with a probability ratio of 1:2. SNPs occur most often in CG sequences, 

resulting in C to T transitions, which are associated with the tendency of C to be 

methylated in CG sequences. In general, a canonical SNP should be present in more 

than 1% of the whole population. In contrast to SNPs, INDEL refers to insertions or 

deletions of small fragments (one or more nucleotides) when comparing to the 

reference genome. 

Analysis tools, such as Samtools and Picard, are used to sort the reads according to 

the genome coordinates, followed by screening out repeated reads. Finally, GATK3 is 

used to carry out SNP calling and INDEL calling. After filtering, results such as those 

shown in the following table are obtained, in which INDEL and SNPs share the same 

columns. 

Table 6.1 SNP results 

#CHROM POS REF ALT CK1 CK2 CK3 treat1 treat2 treat3 Gene_id

3A 10610 G T 0,131 0,137 0,94 303,0 359,0 275,0
FBgn008566

4

4A 1122087 T A NA 2,0 3,0 1,0 3,2 1,2
FBgn005042

8

7D 66513 G A 152,309 492,585 598,916 322,493 158,320 208,742
FBgn003995

9

6B 3353682 G A 7,6 NA NA 1,32 NA NA
FBgn000264

5  
#CHROM: Chromosome/Scaffold ID of SNPs. 

POS: Position of SNPs on corresponding chromosome/scaffold. 

REF: Reference genotype. 

ALT: SNP genotype (Alternative genotype). 

Gene_id: Gene ID from reference GTF file. 

other coloums: Lettered columns show the number of reads supporting either the reference genotype or SNP genotype in each 

sample. 
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7 Expression Quantification 

7.1 Expression Quantification 

Gene expression level is measured by transcript abundance. The greater the 

abundance, the higher is the gene expression level. In our RNA-seq analysis, the gene 

expression level is estimated by counting the reads that map to genes or exons. Read 

count is not only proportional to the actual gene expression level, but is also 

proportional to the gene length and the sequencing depth. In order for the gene 

expression levels estimated from different genes and experiments to be comparable, 

the FPKM is used. In RNA-seq, FPKM, short for the expected number of Fragments 

Per Kilobase of transcript sequence per Millions base pairs sequenced, is the most 

commonest method of estimating gene expression levels, which takes into account the 

effects of both sequencing depth and gene length on counting of fragments (Trapnell, 

Cole, et al., 2010). 

HTSeq software was used to analyze the gene expression levels in this experiment, 

using the union mode. The result files present the number of genes with different 

expression levels and the expression level of single genes. In general, an FPKM value 

of 0.1 or 1 is set as the threshold for determining whether the gene is expressed or not. 

Table 3.7.1 The number of genes with different expression levels 

FPKM Interval CK1 CK2 CK3 treat1 treat2 treat3

0~1 10133(57.46%) 10089(57.21%) 10025(56.85%) 10134(57.47%) 10104(57.30%) 9971(56.54%)

1~3 789(4.47%) 795(4.51%) 848(4.81%) 852(4.83%) 832(4.72%) 951(5.39%)

3~15 2224(12.61%) 2233(12.66%) 2222(12.60%) 2296(13.02%) 2284(12.95%) 2244(12.72%)

15~60 3114(17.66%) 3139(17.80%) 3139(17.80%) 2954(16.75%) 2978(16.89%) 3041(17.24%)

>60 1375(7.80%) 1379(7.82%) 1401(7.94%) 1399(7.93%) 1437(8.15%) 1428(8.10%)  

Table 3.7.2 Gene expression levels 

Gene_id CK1 CK2 CK3 treat1 treat2 treat3

FBgn0085309 34.6327893 99.32356815 0 59.26433452 69.23846564 0

FBgn0267012 23.32232532 0 0 0 78.32945691 0

FBgn0061492 45.55843284 48.95929976 46.77138648 74.0914727 71.87907232 63.49794895

FBgn0053795 0.068977629 0.303770898 0.153895206 0.288996229 0.347646041 0.194675997  

7.2 Comparison between Gene Expression Levels 

To compare gene expression levels under different conditions, an FPKM distribution 

diagram and violin Plot are used. For biological replicates, the final FPKM would be 

the mean value. 
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Figure 3.7.1 Different gene expression levels under different experiment conditions. 

Figure I: FPKM distribution, the x-axis shows the log10(FPKM+1) and the y-axis shows gene density. Figure II: FPKM violin 

Plot, the x-axis shows the sample names and the y-axis shows the log10(FPKM+1). Each violin has five statistical magnitudes 

(max value, upper quartile, median, lower quartile and min value). The violin width shows the gene density. 
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8 RNA-seq Advanced QC 

8.1 RNA-Seq Correlation 

Biological replicates are necessary for any biological experiment, including those 

involving RNA-seq technology (Hansen et al.). In RNA-seq, replicates have a 

two-fold purpose. First, they demonstrate whether the experiment is repeatable, and 

secondly, they can reveal differences in gene expression between samples. The 

correlation between samples is an important indicator for testing the reliability of the 

experiment. The closer the correlation coefficient is to 1, the greater the similarity of 

the samples. ENCODE suggests that the square of the Pearson correlation coefficient 

should be larger than 0.92, under ideal experimental conditions. In this project, the R2 

should be larger than 0.8. 

 

Figure 8.1 RNA-Seq correlation. 

Heat maps of the correlation coefficient between samples are shown.(If the samples are more than 4 groups, then only present the 

scatter diagrams between biological replicates The scatter diagrams demonstrate the correlation coefficient between samples; R2, 

the square of the Pearson coefficient. 
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9 Differential Gene Expression Analysis 

9.1 List of Differentially Expressed Genes 

The input data for differential gene expression analysis are readcounts from gene 

expression level analysis. The differential gene expression analysis contains three 

steps: 

1) Readcounts Normalization; 

2) Model dependent p-value estimation; 

3) FDR value estimation based on multiple hypothesis testing. 

Different software and parameter sets are applied in different situations. The analysis 

methods are listed below: 

Type Software
Normalzatio

n method

p-value

estimation

model

FDR

estimation

method

Differentially expressed gene

screening stardard

With

biological

duplicates

DESeq(Anders

et al, 2010)
DESeq

negative

binomial

distribution

BH padj < 0.05

Without

biological

duplicate

DEGseq(Wang

et al, 2010)
TMM

Poisson

distribution
BH

|log2(FoldChange)| > 1&qvalue <

0.005

 

The readcount value of the ith gene in the jth sample is Kij, then 

Negative binomial distribution: Kij ～ NB(μij,σij2) 

Poisson distribution: Kij ～ P(μij) 

Table 3.9.1 Differentially Expressed Genes 
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Gene Id CK treat
log2FoldCha

nge
pval p-adjusted

FBgn000063

9
36.17650266 252.4500919 -2.8029 2.83E-40 4.93E-37

FBgn002761

1
14.36797269 54.31676236 -1.9185 1.00E-06 9.69E-05

FBgn002840

0
39.36531292 6.325628725 2.6376 2.05E-07 2.23E-05

FBgn002853

3
28.91921033 4.600457255 2.6522 7.99E-06 0.00064263

 
Differentially Expressed Genes List includes:  

(1) Gene id 

(2) Sample1: The readcount values of sample1 after normalization 

(3) Sample2: The readcount values of sample2 after normalization 

(4) log2FoldChange: log2(Sample1/Sample2) 

(5) pvalue (pval): The p-value. 

(6) qvalue (p-adjusted): the p-value after normalization. The smaller the q-value is, the more significant is the difference 

 

9.2 Screening of differentially expressed genes 

Volcano plots are used to infer the overall distribution of differentially expressed 

genes. For experiments without biological replicates, the threshold is normally set as: 

|log2(Fold Change) | > 1 and q-value < 0.005. For experiments with biological 

replicates, as the DESeq already eliminates the biological variation, our threshold is 

normally set as: padj < 0.05. 

 

Figure 9.1 Volcano plot for differentially expressed genes 

The x-axis shows the fold change in gene expression between different samples, and the y-axis shows the statistical significance 

of the differences. Significantly up and down regulated genes are highlighted in red and green, respectively. Genes did not 

express differently between treatment group and control group are in blue. 
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9.3 Cluster Analysis of Gene Expression Differences 

Cluster analysis is used to find genes with similar expression patterns under various 

experimental conditions. By clustering genes with similar expression patterns, it is 

possible to discern unknown functions of previously characterized genes or functions 

of unknown genes. In hierarchical clustering, areas of different colors denote different 

groups (clusters) of genes, and genes within each cluster may have similar functions 

or take part in the same biological process. 

In addition to the FPKM cluster, the H-cluster, K-means and SOM are also used to 

cluster the log2(ratios). Genes within the same cluster exhibit the same trends in 

expression levels under different conditions. 

 

Figure 9.2 Cluster analysis. 

Figure I: the overall results of FPKM cluster analysis, clustered using the log10(FPKM+1) value. Red denotes genes with high 

expression levels, and blue denotes genes with low expression levels. The color range from red to blue represents the 

log10(FPKM+1) value from large to small. Figure II: log2(ratios) line chart. Each grey line in a subline chart represents the 

relative expression value of a gene cluster under different experimental conditions, and the blue line represents the mean value. 

The x-axis shows the experimental condition and the y-axis shows the relative expression value. 
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9.4 The Venn Diagram of Gene Expression Differences 

The Venn diagram presents the number of genes that are uniquely expressed within 

each group, with the overlapping regions showing the number of genes that are 

expressed in two or more groups. (The diagram depicts only the results for groups 2, 

3 , 4 and 5). 

 
Figure 9.3 Venn diagram of differentially expressed genes 

The sum of the numbers in each circle is the total number of genes expressed within a group, and the overlap represents the genes 

expressed in common between groups. 

10 GO Enrichment Analysis of DEGs 

Gene Ontology (GO, http://www.geneontology.org/) is a major bioinformatics 

initiative to unify the presentation of gene and gene product attributes across all 

species. DEGs refer to differentially expressed genes. 

GO enrichment analysis is used by GOseq (Young et al, 2010), which is based on 

Wallenius non-central hyper-geometric distribution. Its characteristics are: the 

probability of drawing an individual from a certain category is different from that of 

drawing it from outsides of the category, and this difference is obtained from 

estimating of the preference of gene length. 

10.1 GO Enrichment Result List of DEGs 

Table 10.1 Significantly Enriched GO Terms in DEGs 
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GO accession Description Term type
Over represented

p-Value

Corrected

p-Value
DEG item DEG list

GO:0004097 catechol oxidase activity molecular_function 4.97E-06 0.016248 2 18

GO:0036263 L-DOPA monooxygenase activity molecular_function 4.97E-06 0.016248 2 18

GO:0036264 dopamine monooxygenase activity molecular_function 4.97E-06 0.016248 2 18

GO:0016682

oxidoreductase activity, acting on

diphenols and related substances as

donors, oxygen as acceptor

molecular_function 2.71E-05 0.066506 2 18

 

Each column stands for:  

(1) GO accession: Gene Ontology entry 

(2) Description: Detailed description of Gene Ontology. 

(3) Term type: GO types, including cellular component, biological process, and molecular function. 

(4) Over represented p-Value: p-value in hypergenometric test. 

(5) Corrected p-Value: Corrected P-value; GO with corrected p-values < 0.05 are significantly enriched in DEGs. 

(6) DEG item: Number of DEGs with GO annotation. 

(7) DEG list: Number of all reference genes with GO annotation. 

10.2 GO Enrichment Bar Chart of DEGs 

 

Figure 10.1 Gene Ontology functional classification 

There are two graphs in each group. Fig 1:The x- axis is GO terms enriched and the y-axis is the number of differential 

expression genes. Different colors are used to distinct biological process, cellular component and molecular function, in which 

the enriched GO terms are marked by "*". Fig 2: The GO terms in the figure 1, which are drawn in subsets of graph based on 

biological process, cellular component, molecular function and differential expression genes.  
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10.3 GO Enrichment DAG Figure 

Directed Acyclic Graph (DAG) is a way to show the results of GO enrichment of 

DEGs. The branches represent the containment relationships, and the range of 

functions gets smaller and smaller from top to bottom. Generally, the top ten of GO 

enrichment results are selected as the master nodes in directed acyclic graph, showing 

the associated GO terms together via the containment relationship, and the degree of 

colours represent the extent of enrichment. In the project, DAG figures of biological 

process, molecular function and cellular component are drawn, respectively. 

 

Figure 10.2 Illustration of topGO DAG. 

Each node represents a GO term, and TOP10 GO terms are boxed. The darker the color is, the higher is the enrichment level of 

the term. The name and p-value of each term are present on the node. 

11 KEGG Pathway Enrichment Analysis of DEGs 

11.1 KEGG Enrichment List 

The interactions of multiple genes may be involved in certain biological functions. 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of manually 

curated databases dealing with genomes, biological pathways, diseases, drugs, and 

chemical substances. KEGG is utilized for bioinformatics research and education, 

including data analysis in genomics, metagenomics, metabolomics and other 

genomics studies. Pathway enrichment analysis identifies significantly enriched 

metabolic pathways or signal transduction pathways associated with differentially 

expressed genes compared with the whole genome background. The formula is: 
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Here, N is the number of all genes with a KEGG annotation, n is the number of DEGs 

in N, M is the number of all genes annotated to specific pathways, and m is number of 

DEGs in M. 

Table 11.1 KEGG Enrichment List 

#Term Database ID
Sample

number

Background

number
P-Value

Corrected P-

Value

ECM-receptor interaction KEGG PATHWAY dme04512 1 11 0.021906934 0.093617632

Riboflavin metabolism KEGG PATHWAY dme00740 1 13 0.025515797 0.093617632

Tyrosine metabolism KEGG PATHWAY dme00350 1 17 0.032697594 0.093617632

Other glycan degradation KEGG PATHWAY dme00511 1 22 0.041607836 0.093617632
 

(1) #Term: Description of KEGG pathways. 

(2) Database:  

(3) ID: KEGG ID. 

(4) Sample number: Number of DEGs with pathway annotation. 

(5) Background number: Number of all reference genes with pathway annotation. 

(6) P-value: P-value in hypergenometric test. 

(7) Corrected P-value: Pathways with corrected p-values 0.05 are significantly enriched in DEGs. 

11.2 KEGG Enrichment Scattered Plot 

Scatter diagram is a graphical display way of KEGG enrichment analysis results. In 

this plot, enrichment degree of KEGG can be measured through Rich factor, Qvalue 

and genes counts enriched to this pathway. Rich factor is the ratio of DEGs counts to 

this pathway in the annotated genes counts. The more the Rich factor is, the higher is 

the degree of enrichment. Qvalue is the adjusted p-value after multiple hypothesis 

testing, and its range is [0,1]. The more the qvalue is close to zero, the more 

significant is the enrichment. Top 20 most significant enriched pathways are chosen in 

KEGG scatter plot, and if the enriched pathways counts is less than 20, then put all of 

them into the plot. KEGG enrichment scatter diagram is as follows. 
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Figure 11.1 KEGG enrichment scatter plot of DEGs 

The y-axis shows the name of the pathway and the x-axis shows the Rich factor. Dot size represents the number of different 

genes and the color indicates the q-value. 

11.3 KEGG Enrichment Pathway 

KEGG enrichment pathway shows the DEGs significantly enriched pathways. In the 

diagram, if this node contains up-regulated genes, the KO node is labeled in red. If the 

node contains up-regulated genes, the KO node is labeled in green. If the node 

contains both up and down-regulated genes, the labeled color is yellow. 

 

Figure 3.11.2 Diagram showing significantly enriched KEGG pathways 
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12 Protein-Protein Interaction Network Analysis 

The STRING database (http://string-db.org/) is used for the analysis of PPI (predicted 

protein-protein interactions). The results document can be imported into Cytoscape 

software, and then visualized and edited. The Cytoscape manual can be found at: 

http://wiki.cytoscape.org/Cytoscape_3/UserManual. 

 

Figure 3.12.1 Cytoscape UI 
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13 The Transcription Factor Analysis Results 

iTAK is used to perform the transcription factor analysis of plants and Animal TFDB 

database is used to perform the transcription factor analysis of animals. 

Table 3.13.1 The Transcription Factor Analysis Results 

Ensembl ID Gene ID Symbol Family

FBgn0041111 33496 lilli AF-4

FBgn0039411 43174 dys bHLH

FBgn0003270 35110 amos bHLH

FBgn0085432 43769 pan HMG
 

For plant: 

First Column: the Gene ID 

Second Column: the family name of the transcription factors 

 

For Animal: 

Ensembl ID: The Ensembl Gene ID 

Gene ID: The NCBI Gene ID 

Symbol: The Gene Name 

Family: The Family Name of Transcription Factor 
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4 Appendix 

4.1 Result Directory Lists 

Click to open the result directory.(Note: Please make sure the report directory and the 

result directory is under the same directory). 

Result Directory Lists: html 

../NHHWxxxxxx_species_results  

├── 1. OriginalData: Raw Data（fastq format）  

├── 2. QC: Data Quality Control  

│   ├── 2.1. ErrorRate: Error Rate  

│   ├── 2.2. GC: GC Content Distribution  

│   ├── 2.3. ReadsClassification: Data Filtering  

│   └── 2.4. DataTable: Data Quality Control Summary  

├── 3. Mapping: Mapping to a Reference Genome  

│   ├── 3.1. MapStat: Overview of Mapping Status  

│   ├── 3.2. MapReg: Mapped Regions in Reference Genome (exons, introns, or 

intergenic regions)  

│   ├── 3.3. ChrDen: Distribution of Mapped Reads in Chromosomes  

│   └── 3.4. IGV: Visualization of Mapping Status of Reads using IGV  

├── 4. AS: Alternative Splicing Analysis  

├── 5. NovelGene: Novel Gene Prediction  

├── 6. SNP: SNP & InDel  

├── 7. GeneExprQuatification: Expression Quantification  

│   ├── 7.1. GeneExprQuatification: Expression Quantification  

│   └── 7.2. GeneExpContrast: Comparison between Gene Expression Levels  

├── 8. AdvancedQC: RNA-seq Advanced QC  

│   └── 8.1. Correlation: RNA-Seq Correlation  

├── 9. DiffExprAnalysis: Gene Expression Difference Analysis  

│   ├──9.1. DEGsList: List of Differentially Expressed Genes 

(all,up-regulated,down-regulated)  

│   ├── 9.2. DEGsFilter: Volcano plot  

│   ├── 9.3. DEGcluster: Cluster Analysis of Gene Expression Differences  

│   │   └── Subcluster  

│   └── 9.4. VennDiagram: The Venn Diagram  

├── 10. DEG_GOEnrichment: GO Enrichment Analysis of DEGs  

│   ├── 10.1. DEG_GOList: GO Enrichment Result List of DEGs  

│   ├── 10.2. DAG: GO Enrichment DAG Figure  
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│   └── 10.3. BAR: GO Enrichment Bar Chart of DEGs  

├── 11. DEG_KEGGEnrichment: KEGG Pathway Enrichment Analysis of DEGs  

│   ├── 11.1. DEG_KEGGList: KEGG Enrichment List  

│   ├── 11.2. DEG_KEGGScat: KEGG Enrichment Scattered Plot  

│   └── 11.3. DEG_KEGGPath: KEGG Enrichment Pathway  

│       ├── ALL  

│       ├── DOWN  

│       └── UP  

├── 12. DEG_PPI: Protein-Protein Interaction Network Analysis  

└── 13. DEG_Trans_Factor: The Transcription Factor Analysis Results 

4.2 Software List 

Software and Parameter 

 

4.3 Novofinder 

Novofinder is a powerful software of RNA-seq designed by RNA team in Novogene, 

which can be used in browsing and integrating your complicated RNA-seq results. 

Novefinder can present gene sequence, marker, annotation, gene expression result, 

differential expression analysis result and functional enrichment result, basing on a 

user defined gene list and filter. We hope Novofiner can efficiently and effectively 

deliver customer services. 
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NovoFinder Manual: PDF 
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