

Midori Green Xtra DNA Stain - Safety Report

IDENTIFICATION OF THE PRODUCT AND OF THE COMPANY					
Product name	Midori Green Xtra DNA Stain				
Catalog number	MG09 MG10				
Supplier	NIPPON Genetics EUROPE GmbH Binsfelder Strasse 77 52351 Düren Germany Phone: +49 2421 554960 Fax: +49 2421 5549611				
Information in case of emergency	Phone: +49 2421 554960 e-mail: info@nippongenetics.eu				

Introduction

Ethidium bromide (EtBr) is most commonly used nucleic acid stain in molecular biology laboratories. It has been proved to be strong carcinogen and therefore considered hazardous for laboratory personnel and environment.

Midori Green Xtra DNA Stain is a nucleic acid stain which can be used as a safer alternative to the traditional Ethidium bromide stain for detecting nucleic acid in agarose gels. It is as sensitive as Ethidium bromide and can be used exactly the same way in agarose gel electrophoresis with some extra possibilities.

The safety of Midori Green Xtra DNA Stain has been controlled with two tests:

- I. Ames Test
- II. Cytotoxicity Test

The result of the Ames test does not show a mutagenic effect of Midori Green Advance. Additionally, based upon the observed results of the Cytotoxicity test Midori Green Xtra is considered to have no cytotoxic effects either.

I AMES TEST

1. Test System:

The Ames test employed four Salmonella strains, TA97a, TA98, TA100, TA102 and TA1535. When these bacteria are exposed to mutagenic agents, under certain conditions reverse mutation from amino acid (histidine) auxotrophy to prototrophy occurs, giving colonies of revertants. In order to test the mutagenic toxicity of metabolised products, S9 fraction, a rat liver extract, was used in the assays. The S9 fraction contains a mixture of several enzymes and is known to be able to convert some chemicals into mutagens.

Midori Green Xtra DNA Stain was dissolved in DMSO, and the concentrations were 0.313, 0.625, 1.25, 2.5 and 5 μ L/plate, respectively.

The control groups included solvent control plates (DMSO) and positive control plates. Different positive control articles are used based on different bacteria strains. The description of bacteria strains and individual concentration of mutagens are shown below:

Mutagen	S9	Concentration (µg/plate)	Strain
9-aminoacridine	-	50	TA97a
2-nitrofluorence	-	5	TA98
sodium azide	-	0.4	TA100, TA1535
mitomycin C	-	0.5	TA102
2-aminoanthracene	+	4.0	TA1535, TA102
benzo [a] pyrene	+	4.0	TA98
2-aminofluorene	+	4.0	TA97a, TA100

^{+:} with S9; -: without S9

2. Test Procedure:

2.1. Spot test:

The test was performed by adding test article solution on sterile paper discs, which were placed on *S. typhimurium* plates. Plates were incubated at 37±2°C for 24 to 48 hours and the bacteriostasis ring (cell toxicity) or circularity formed by large number of colonies (mutation) was checked.

2.2. Plate incorporation test:

The test substance (0.1 mL) and 0.1 mL bacterial suspension with 0.5 mL S9 mixture (+S9) or without S9 mixture (-S9) were mixed uniformly in test tubes with 2 mL overlay agar (liquid, 45°C, containing 0.5 mM histidine/biotin). The mixture was uniformly poured on the prepared underlay agar plates. After solidification, the plates were incubated at 37°C for 48 h. At the end of the incubation, revertant colonies per plate were counted. All plating was done in triplicate. The spontaneous mutation colonies of negative control group must be in the reasonable range and the reverse mutation colonies of each positive control must be two times higher than the average of the negative control group.

3. Test Result:

In the spot test there were no obvious bacteriostasis ring (cell toxicity) or circularity formed by large numbers of colonies (mutation) around the disc in each test group, so the 5μ L/plate, 2.5μ L/plate, 1.25μ L/plate, 0.625μ L/plate and 0.313μ L/plate dosage were used in plate incorporation test. This test showed that whether the rat liver enzyme metabolic system treated or not, all test data were within effective range. Furthermore, the revertant numbers of test article did not appear to be two times more than that of the negative contol groups and did not reach positive reaction criteria.

Test Strain TA97a TA98 TA100 TA102	35
------------------------------------	----

		S9 =	4	+	_	+	-	+	-	+		+	_
		3	plate 1	172	84	50	57	104	135	504	492	10	11
			plate 2	187	85	55	43	114	110	528	412	11	12
	(NC)		plate 3	205	93	53	49	120	91	736	388	12	16
			Avg	188	87,3	52,7	49,7	112	112	589,3	430,7	11	13
			SD	16,5	4,9	2,5	7	22,1	22,1	127,6	54,5	1	2,6
	- 2	2X Avg. (Of NC	376	174,7	105,3	99,3	224	224	1178,7	861,3	22	26
			plate 1	412	576	168	640	300	300	1352	1648	171	246
			plate 2	418	624	161	512	272	272	1304	1480	150	262
		ositive ontrol	plate 3	426	822	152	496	264	264	1256	1464	137	269
			Avg	418,7	666,7	160,3	549,3	278,7	278,7	1304	1530,7	152,7	259
			SD	7	117,9	8	78,9	18,9	18,9	48	101,9	17,2	11,8
			plate 1	187	107	54	51	92	92	608	488	16	10
			plate 2	208	101	46	38	93	93	664	428	12	10
		5	plate 3	209	91	49	35	94	94	800	380	11	10
			Avg	201,3	99,7	49,7	41,3	93	93	690,7	432	13	10
late)			SD	12,4	8,1	4	8,5	1	1	98,7	54,1	2,6	0
Colony Number (CFU/plate)			plate 1	207	87	46	36	100	53	720	488	13	18
er (C			plate 2	201	85	52	45	106	65	732	416	13	16
quin		2,50	plate 3	195	84	56	47	119	65	752	404	16	16
N V			Avg	201	85,3	51,3	42,7	108,3	61	734,7	436	14	16,7
Colc	ate)		SD	6	1,5	5	5,9	9,7	6,9	16,2	45,4	1,7	1,2
	Test Article Solution (µL/plate)		plate 1	189	52	26	30	96	65	584	484	22	10
	ion (I		plate 2	148	54	30	30	96	53	608	480	16	10
	Solut	1,25	plate 3	131	70	31	34	78	50	680	464	15	11
	ticle (Avg	165	58,7	29	31,3	90	56	624	476	17,7	10,3
	st Art		SD	29,8	9,9	2,6	2,3	10,4	7,9	50	10,6	3,8	0,6
	Te		plate 1	210	66	26	30	106	55	592	516	8	10
			plate 2	226	64	26	23	97	57	776	464	9	12
		0.625	plate 3	223	56	24	22	89	65	816	460	11	13
			Avg	219,7	62	25,3	25	97,3	59	728	480	9,3	11,7
			SD	8,5	5,3	1,2	4,4	8,5	5,3	119,5	31,2	1,5	1,5
			plate 1	181	68	24	26	75	59	704	382	14	14
		0.313	plate 2	203	64	24	23	90	57	656	384	13	14
			plate 3	235	62	26	20	103	52	624	408	13	14
			Avg	206,3	64,7	24,7	23	89,3	56	661,3	388	13,3	14
			SD	27,2	3,1	1,2	3	14	3,6	40,3	18,3	0,6	0

4. Conclusion:

The results showed that the revertant numbers of the tested reagent "Midori Green Xtra" appeared to be two times less than that of the negative control group in *Salmonella typhimurium* TA97a, TA100 and TA1535. Midori Green Xtra causes no mutagenic effects to these *Salmonella typhimurium* strains.

II CYTOTOXICITY TEST

1. Test System

The cytotoxicity test is performed according to the requirements described in Biological evaluation of medical devices – Part 5: Tests for *in vitro* cytotoxicity (ANSI/AAMI/ISO 10993-5).

The test is designed to evaluate the acute adverse biological effects of chemical compounds. Cytotoxicity is preferred as a pilot project test and an important indicator for toxicity evaluation as it is simple, fast and has a high sensitivity. This test saves animals from toxicity.

The cell line use for the test is L-929 cell (NCTC clone 929, BCRC RM60091). This cell line was cultured in Eagle's minimum essential medium (MEM) containing 10% fetal bovine serum (FBS) and 2.0 mM L-Glutamine at 37°C and 5% CO₂.

As negative control the cells were treated only with medium. The positive control group was treated with phenol. The test item (Midori Green Xtra was diluted 10,000 fold).

2. Test Procedure

L-929 cells were treated with the test item, negative control or positive control. Triplicate plates are prepared for each treatment.

The cells were incubated for 24 hours and observed microscopically for cytotoxic effects. Cultures were observed under microscopy and grade for reactivity using a 0 to 4 scale.

0= no reactivity Discrete intracytoplasmatic granules; no cell lysis.

1= slight reactivity

Not more than 20% of the cells are round, loosely attached and without

intracytoplasmatic granules; occasional lysed cells are present.

2= mild reactivity Not more than 50% of the cells are round and devoid of

intracytoplasmatic granules; no extensive cell lysis and empty areas

between cells.

3= moderate reactivity

Not more than 70% of the cell layers contain rounded cells or are lysed.

4= severe reactivity Nearly complete destruction of the cell layers.

MTT quantitative analysis:

Culture medium from L929 cells was replaced with culture medium containing the test item, negative control or positive control. After incubation for 24 hours, MTT was added in all wells and incubated for 2 ± 0.5 hours. After incubation, DMSO was added to the wells and read at 570 nm using a spectrophotometer. Mean value of growth inhibition was calculated by the following formula:

Mean value growth inhibition = 100% + A570(Negative control) - A570(positive control or test item) / A570(negative control)

3. Results:

Qualitative analysis: Results of morphology of cells after 24 hrs treatment

Figure 1: Morphology of cells treated for 24 hrs. (A) Negative control, culture medium containing 10% FBS. (B) Positive control, culture medium containing phenol. (C) Test item, culture medium containing 10,000 fold diluted test substance. Cells treated with negative control and test item displayed no lysis. Cells treated with positive control were nearly complete destructed of the cell layer.

Result of microscopical evaluation

Total of Microscopic		Maria Laborat Carillan	0 h
Treatment group	Treatment duration (hr)	Morphology of cells ^a	Score values ^b
Negative control ^c	24±1	Discrete intracytoplasmaic granules, no cell lysis.	0
Positive control ^d	24±1	Nearly complete destruction of the cell layer.	4
Test iteme	24±1	Discrete intracytoplasmaic granules, no cell lysis.	0

^aTriplicate experiments were analyzed for each treatment

Results of growth inhibition

Result of MTT quantitative analysis

Treatment group	Absorbance (570 nm) ^a	Mean value growth inhibition [%] ^b
Negative control ^c	1.136±0.024	0.0.
Positive control ^d	0.028±0.001*	97.5
Test iteme	1.049±0.015*	7.6

^aTriplicate experiments were analyzed for each treatment, absorbance results were shown in Mean ± SD

4. Conclusion

Due to the high sensitivity of the mouse fibroblast growth inhibition test, it is assumed that a mean growth inhibition of up to 30% does not indicate a significant risk of cytotoxicity. Based upon the observed results and under the test-conditions chosen, the test substance "Midori Green Xtra" is considered to have no cytotoxic effects since the grade was zero in microscopical evaluation and mean growth inhibition was 7.6% in the growth inhibition test with L929 mouse fibroblasts.

^bDefinition of Score value based on ISO10993-5 : 2009

^cculture medium containing 10% FBS

dculture medium containing phenol

eculture medium containing 10,000 fold diluted test substance

^bMean value growth inhibition = 100% x A570_(Negative control) – A570 _(Positive control or Test istem) / A570_(Negative control)

If the mean value of test item was less than 0%, data is presented as 0%.

^cculture medium containing 10% FBS

dculture medium containing phenol

eculture medium containing 10,000 fold diluted test substance

^{*} Significant different to negative control group (One-Way ANOVA, p<0.005)