adding the liquid, and discard 40µL Elution buffer from well #5.)

4) Place the reagent strip rack with reagent strip to the NPA-32P; install the 8-strip tips on the instrument.

Note: Make sure again that the reagent strip has been inserted into the bottom of the reagent strip rack.

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min : ss)	Adsorption	Magnet Time (min: ss)
1	Lysis	1	710	:	fast	10:00	N	-:
2	Lysis	1	710	00:05	fast	00:00	N	:

Lysis temperature:65°C, lysis stop heating step: 2th

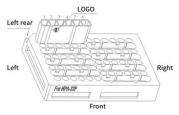
5) At the end of step 4, take the reagent strip out. Add 300µL isopropanol in well #1, and put the reagent strip back into NPA-32P nucleic acid purification system. The automatic extraction experiment was carried out according to the following procedure:

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min: ss)	Adsorption	Magnet Time (min: ss)
1	Beads	6	200	:	slow	00:30	N	00:30
2	Bind	1	1000	:	fast	08:00	S	02:00
3	Wash 1	2	700	:	fast	03:00	S	01:00
4	Wash 2	3	600	:	fast	03:00	S	01:00
5	Wash 3	4	600	:	fast	03:00	S	01:00
6	Elution	5	100	05:00	fast	10:00	С	01:40
7	Discard	6	200	:	slow	00:30	N	:

Elution temperature: 60°C, Elution start heating step: 6th

After the automation process is completed, the purified nucleic acid is in well #5; if not used immediately, transfer the elution to a new 0.5 mL nuclease-free centrifuge tube and save it at -80 °C.

(Analysis Nucleic Acid)


Get some DNA, diluted in a advisable factor with elution buffer.

Survey the OD260, OD280 and OD320.

Concentration (µg/mL) =50×OD260×dilution fact.

1.7≤OD260-320/ OD280-320≤2.1.

【Reagent strip installation diagram】

Basic Information

Hangzhou Bioer Technology Co.,Ltd

Address: No.1192 Bin'An Rd, Binjiang District, Hangzhou, Zhejiang Province, China

Tel: 0571-87774567 Fax: 0571-87774553

Web: www.bioer.com.cn Zip Code: 310053

Aftersales Service Provider: Hangzhou Bioer Technology Co.,Ltd

MagaBio plus General Genomic DNA Purification Kit II

(Kit Components)

Cat#	BSC74T1S	BSC74S1S 32Tests		
Components	16Tests			
TES Buffer	8mL	16 mL		
PK Solution	160 μL	320 μL		
RNase A Solution	16 μL	32 μL		
Lysis Buffer				
Wash Buffer I				
Wash Buffer II	Pre-loaded reagents strip 1T * 16	Pre-loaded reagents strip 1T * 32		
Elution Buffer				
Maganetic beads	1			
Handbook	1	1		

(Storage)

- 1. The kit can be transported at room temperature.
- 2. All reagents are stored at 2-8°C.
- 3. All reagents, when stored properly, are stable for 12 months from the time of delivery.

[Introduction]

MagaBio plus General Genomic DNA Purification Kit II is designed for rapid and reliable isolation of high-quality genomic DNA from blood, tissue, saliva, buccal swabs, cultured cells, and dry blood spots. MagaBio Particles, magnetic beads, provide a quick magnetic response time reducing overall processing time. This system combines the reversible nucleic acid-binding properties of MagaBio paramagnetic particles with the time-proven efficiency of Bioer automatic nucleic acid purification system to provide a fast and convenient method to isolated DNA from a variety of samples. Utilizing paramagnetic particles provides high-quality DNA that is suitable for direct use in most downstream applications, such as amplification and enzymatic reactions, next-generation sequencing.

Principle and Advantage

Nucleic acid is released under the action of Proteinase K Solution and Lysis Buffer. Magnetic beads can combine with DNA exclusively and specifically after adding isopropanol. Magnetic beads combined with DNA are captured by magnetic rod; Multiple Wash Buffers will remove contaminants. Purified DNA is released into the Elution Buffer by Magnetic beads.

MagaBio technic has great advantages:

- 1. Mini sample, high purification;
- 2. Simple and streamline separation procedure, used for auto-platform;
- 3. First elution can acquire 85% or more DNA;
- 4. No high salt solution. No inhibitor;
- 5. No spin column.

[Materials and Equipment to be prepared by user]

Magnetic Rack or Bioer NPA-32P purification instrument:

Reagent preparing

- Take out the required number of pre-packed reagent strips from the sealing plastic bag. If the magnetic beads
 adhered to the tube wall or sealing film of the pre-packed reagent strip, please invert the reagent strip upside
 down and mix several times to re-suspend the magnetic beads.
- Identify the direction of the pre-loaded reagent strip (magnetic beads in well #6). Fix the pre-packed reagent strip on the reagent strip rack, and centrifuge it briefly in a 96-deep-well plate centrifuge to avoid adhering liquid on the tube wall and sealing film, in order to ensure the certain volume of the purified reagent.

4 For research use only

- Note: When placing the pre-packed reagent strip, please refer to the installation diagram of the reagent strip. Make sure that the reagent strip has been inserted into the bottom of the reagent strip rack.
- Take out the reagent strip racks from the centrifuge. Identify the direction of the pre-loaded reagent strip (magnetic beads in well #6). Tear off sealing film of the reagent strip.

[Protocol]

- 1. Blood or saliva processing
- Add 250μL blood or saliva and 10μL PK Solution in well #1 of the reagent strip, please avoid cross-contamination.
- 2) Place the reagent strip rack with reagent strip to the NPA-32P; install the 8-strip tips on the instrument. Note: Make sure again that the reagent strip has been inserted into the bottom of the reagent strip rack.
- 3) Run the program according to the following procedures:

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min : ss)	Adsorption	Magnet Time (min : ss)
1	Lysis	1	710	:	fast	10:00	N	:
2	Lysis	1	710	00:05	fast	00:00	N	:

Lysis temperature:65°C, lysis stop heating step: 2th

4) At the end of step 3, take the reagent strip out. Add 300μL isopropanol in well #1, and put the reagent strip back into NPA-32P nucleic acid purification system. The automatic extraction experiment was carried out according to the following procedure:

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min: ss)	Adsorption	Magnet Time (min: ss)
1	Beads	6	200	:	slow	00:30	N	00:30
2	Bind	1	1000	:	fast	08:00	S	02:00
3	Wash 1	2	700	:	fast	03:00	S	01:00
4	Wash 2	3	600	:	fast	03:00	S	01:00
5	Wash 3	4	600	:	fast	03:00	S	01:00
6	Elution	5	100	05:00	fast	10:00	С	01:40
7	Discard	6	200	:	slow	00:30	N	:

Elution temperature: 60°C, Elution start heating step: 6th

2. Tissue processing

- Prepare all reagents and samples under room temperature. Grind the tissue into powder under the liquid nitrogen.
- Add 30mg sample powder to the 1.5mL DNase-free tube. Add 10μL PK Solution and 300μL TES Buffer into the tube and mix by pulse-vortexing for 15 seconds.
- 3) Incubate at 56°C for 30 minutes (The lysis step can be more longer for 1-3h,or overnight for ear and tail).
- Remove the tube from 56°C.Centrifuge for 5min at 12000g. Transfer 300μL of the supernatant in well #1 of the reagent strip.
- 5) Place the reagent strip rack with reagent strip to the NPA-32P; install the 8-strip tips on the instrument.

Note: Make sure again that the reagent strip has been inserted into the bottom of the reagent strip rack.

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min: ss)	Adsorption	Magnet Time (min : ss)
1	Lysis	1	710	:	fast	10:00	N	:
2	Lysis	1	710	00:05	fast	00:00	N	:

Lysis temperature:65°C, lysis stop heating step: 2th

6) At the end of step 5, take the reagent strip out. Add 300µL isopropanol in well #1, and put the reagent strip back into NPA-32P nucleic acid purification system. The automatic extraction experiment was carried out according to the following procedure:

2

For	research	1100	only

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min: ss)	Adsorption	Magnet Time (min: ss)
1	Beads	6	200	:	slow	00:30	N	00:30
2	Bind	1	1000	:	fast	08:00	S	02:00
3	Wash 1	2	700	:	fast	03:00	S	01:00
4	Wash 2	3	600	:	fast	03:00	S	01:00
5	Wash 3	4	600	:	fast	03:00	S	01:00
6	Elution	5	100	05:00	fast	10:00	С	01:40
7	Discard	6	200	:	slow	00:30	N	:

Elution temperature: 60°C, Elution start heating step: 6th

3. Oral swab processing

- Use a cotton swab in intraoral wipes 15-20 times. Put the swab to a 2mL centrifuge tube, Cut out stem part from the swab with scissors.
- 2) Add 400μL 500μL of TES Buffer and 10 μL PK Solution to the 1.5mL DNase-free tube from the above.
- Mix by pulse-vortexing for 15 seconds. Put it in a 56°C thermostat oscillator, Vortex 900rpm for 30mins. Centrifuge for a few seconds.
- 4) Transfer all liquid in well #1 of the reagent strip.
- 5) Place the reagent strip rack with reagent strip to the NPA-32P; install the 8-strip tips on the instrument.

Note: Make sure again that the reagent strip has been inserted into the bottom of the reagent strip rack.

Step	Name	Well	Volume (µL)	Waiting Time (min : ss)	Speed	Mixing Time (min ; ss)	Adsorption	Magnet Time (min: ss)
1	Lysis	1	710	:	fast	10:00	N	:
2	Lysis	1	710	00:05	fast	00:00	N	:

Lysis temperature:65°C, lysis stop heating step: 2th

6) At the end of step 5, take the reagent strip out. Add 300µL isopropanol in well #1, and put the reagent strip back into NPA-32P nucleic acid purification system. The automatic extraction experiment was carried out according to the following procedure:

Step	Name	Well	Volume (µL)	Waiting Time (min: ss)	Speed	Mixing Time (min: ss)	Adsorption	Magnet Time (min: ss)
1	Beads	6	200	:	slow	00:30	N	00:30
2	Bind	1	1000	:	fast	08:00	S	02:00
3	Wash 1	2	700	:	fast	03:00	S	01:00
4	Wash 2	3	600	:	fast	03:00	S	01:00
5	Wash 3	4	600	:	fast	03:00	S	01:00
6	Elution	5	100	05:00	fast	10:00	C	01:40
7	Discard	6	200	:	slow	00:30	N	:

Elution temperature: 60°C, Elution start heating step: 6th

4. Blood spot processing

- 1) Put 8 pieces of blood spots sample to a 1.5mL DNase-free tube. The area of each blood spots is 3×3mm.
- Add 300μL TES Buffer and 10μL PK into the 1.5mL DNase-free tube.
- Mix by pulse-vortexing intensively for 10 seconds. Put it in a 56°C thermostat oscillator, Vortex 900rpm for 45mins
- 3) Transfer all liquid in the well #1 of the reagent strip. (Discard 150µL Lysis buffer from well #1 before

3 For research use only